Correlation of steady-state creep and changing microstructure in polycrystalline SiC sintered with powder derived via gaseous reactants in an are plasma

Abstract

The mechanisms of steady-slate creep in compression in a sintered SiC produced via sintering of β-SiC powders derived from gaseous reactants in a plasma are have been determined from (1) kinetic data within the ranges of temperature and constant stress of 1770–2020 K and 17–208 MPa, respectively, and (2) the results of transmission electron microscopy (TEM) and other microbeam characterization techniques. The stress exponent was 2.06 ± 0.04; the values of activation energy were 913 ± 13 and 630 ± 14 kJ/mol above and below, respectively, a knee of ∼∼ 1920 K. Gliding dislocations and B4C precipitates, which developed within the grains during creep, and their interaction were the dominant microstructural features of the crept material. Apparent nonmechanical pinning of the dislocations at the precipitates indicated that the latter attracted the dislocations rather than acting as classical obstacles to dislocation movement. A synthesis of this information leads to the conclusion that the controlling creep mechanisms in this SiC were grain boundary sliding accommodated by grain boundary diffusion at T < 1920 K and lattice diffusion at T > 1920 K. The parallel mechanism of dislocation glide also contributed to the total strain.

This is a preview of subscription content, access via your institution.

References

  1. 1

    A. Djemel, B. Pellisier, J. Castaing, and J. Cadoz, presented at the 83rd Annual Meeting of the American Ceramic Society, Washington, DC (unpublished research). For abstract, see Bull. Am. Ceram. Soc. 60, 381 (1981).

  2. 2

    A. Djemel, J. Cadoz, and J. Philibert, in Creep and Fracture of Engineering Materials and Structures, edited by B. Wilshire and D. R. J. Owen (Pineridge, Swansea, U.K., 1981), p. 381.

  3. 3

    P. L. Farnsworth and R. L. Coble, J. Am. Ceram. Soc. 51, 264 (1966).

    Article  Google Scholar 

  4. 4

    T. L. Francis and R. L. Coble, J. Am. Ceram. Soc. 52, 115 (1968).

    Article  Google Scholar 

  5. 5

    H. Tanaka and Y. Inomata, Yogyo-Kyokai-Shi 93, 45 (1985).

    CAS  Google Scholar 

  6. 6

    R. L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  7. 7

    F. R. N. Nabarro, Philos. Mag. 16, 231 (1967).

    CAS  Article  Google Scholar 

  8. 8

    C. Herring, J. Appl. Phys. 21, 437 (1950).

    Article  Google Scholar 

  9. 9

    T. G. Langdon, Philos. Mag. 32, 689 (1970).

    Article  Google Scholar 

  10. 10

    Y. Inomata, J. Surf. Sci. Soc. Jpn. 4, 102, 223 (1983).

    Article  Google Scholar 

  11. 11

    Y. Inomata, in the Proceedings of the International Symposium on Ceramic Components for Engine, Hakone, Japan, October 1983, edited by S. Somiya, E. Kanai, and K. Ando (Elsevier Science, New York, 1986), p. 753.

  12. 12

    J. E. Lane, C. H. Carter, and R. F. Davis, J. Am. Ceram. Soc. 71, 281 (1988).

    CAS  Article  Google Scholar 

  13. 13

    J. D. Hong, D. E. Newberry, and R. F. Davis, J. Mater. Sci. 16, 2485 (1981).

    CAS  Article  Google Scholar 

  14. 14

    M. Hon and R. F. Davis, J. Mater. Sci. 14, 2411 (1979).

    CAS  Article  Google Scholar 

  15. 15

    R. F. Davis, J. E. Lane, C. H. Carter, Jr., J. Bentley, W. H. Wadlin, D. P. Griffis, R. W. Linton, and K. L. More, Scanning Electron Microsc. 3, 1161 (1984).

    Google Scholar 

  16. 16

    K. L. More, C. H. Carter, Jr., J. Bentley, W. H. Wadlin, L. LaVanier, and R. F. Davis, J. Am. Ceram. Soc. 69, 695 (1986).

    CAS  Article  Google Scholar 

  17. 17

    P. T. B. Shaffer, Mater. Res. Bull. 5, 519 (1970).

    CAS  Article  Google Scholar 

  18. 18

    H. D. Batha and L. H. Hardy, in Silicon Carbide 1973, edited by R. C. Marshall, J. W. Faust, Jr., and C. E. Ryan (Univ. South Carolina Press, Columbia, SC, 1974), p. 435.

  19. 19

    Yu. A. Vodakov and E. N. Mokhav, in Silicon Carbide 1973, edited by R. C. Marshall, F. W. Faust, Jr., and C. E. Ryan (Univ. South Carolina Press, Columbia, SC, 1974), p. 508.

  20. 20

    Y. Murata and R. H. Smoak, in the Proceedings of the International Symposium on Factors in Densification and Sintering of Oxide and Nonoxide Ceramics, edited by Y. Somiya and S. Saito (Gakujutsu Bunken Fukya-kai, Ookayma, Tokyo, Japan, 1978), p. 382.

  21. 21

    Y. Tajima and W. D. Kingery, J. Am. Ceram. Soc. 65, C27 (1982).

    CAS  Article  Google Scholar 

  22. 22

    Y. Tajima and W. D. Kingery, J. Mater. Sci. 17, 2289 (1982).

    CAS  Article  Google Scholar 

  23. 23

    A. J. Becker, T. N. Meyer, F. N. Smith, and J. F. Edd, in Proc. Mater. Res. Soc. 98, 335 (1987).

    CAS  Article  Google Scholar 

  24. 24

    B. R. Rossing and H. R. Baumgartner, Paper 83-C-87 presented at the 89th annual meeting of the American Ceramic Society, Pittsburg, PA. For abstract, see 89th Annual Meeting Abstracts, American Ceramic Society.

  25. 25

    C. H. Carter, Jr., R. F. Davis, and J. Bentley, J. Am. Ceram. Soc. 67, 409 (1984).

    CAS  Article  Google Scholar 

  26. 26

    C. H. Carter, Jr., C. A. Stone, R. F. Davis, and D. R. Schaub, Rev. Sci. Instrum. 51, 1352 (1980).

    CAS  Article  Google Scholar 

  27. 27

    L. U. Ogbuji, T. E. Mitchell, and A. H. Heuer, J. Am. Ceram. Soc. 64, 91 (1981).

    CAS  Article  Google Scholar 

  28. 28

    L. U. Ogbuji, T. E. Mitchell, A. H. Heuer, and S. Shinozaki, J. Am. Ceram. Soc. 64, 100(1981).

    CAS  Article  Google Scholar 

  29. 29

    Powder Diffraction File, compiled by JCPDS, edited by W. F. McClure (International Center for Diffraction, Philadelphia, PA, 1986), File No. 35-798.

  30. 30

    D. J. H. Cockayne, J. Microsc. Oxford 98, 116 (1973).

    Article  Google Scholar 

  31. 31

    J. B. Posthill and R. F. Davis (unpublished research, 1987).

  32. 32

    D. J. H. Cockayne, J. Appl. Cryst. 8, 222 (1975).

    Article  Google Scholar 

  33. 33

    J. H. Schroder and E. Artz, Scr. Metall. 19, 1129 (1985).

    Article  Google Scholar 

  34. 34

    L. M. Brown and R. K. Ham, in Strengthening Methods in Crystals, edited by A. Kelly and R. B. Nicholson (Halsted, New York, 1971), pp. 9–135.

  35. 35

    V. C. Nardone, D. E. Matejczyk, and J. K. Tien, Acta Metall. 32, 1509 (1984).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. D. Nixon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nixon, R.D., Posthill, J.B., Davis, R.F. et al. Correlation of steady-state creep and changing microstructure in polycrystalline SiC sintered with powder derived via gaseous reactants in an are plasma. Journal of Materials Research 3, 1021–1030 (1988). https://doi.org/10.1557/JMR.1988.1021

Download citation