Sputter deposition of a corrosion-resistant amorphous metallic coating


Starting with corrosion-resistant amorphous Fe32Ni36Cr14P12B6 alloy material, rf sputter deposition has been successfully used to deposit amorphous thin films very similar in composition onto low-carbon (i.e., 1008) steel. The effects that varying sputter deposition parameters has on a film’s corrosion resistance, microstructure, and chemical composition have been examined. Optical, scanning, and transmission electron microscopy, Auger depth profiling, and x-ray diffraction were used to characterize the microstructure and composition of the films, while the corrosion resistance was determined by anodic polarization in basic and acidic solutions. A ∼4000 Å thick amorphous film sputtered at ambient temperature onto a 0.05 μm polished 1008 steel substrate improved the corrosion resistance of the steel in a buffered borate solution by lowering the steel’s critical current density by two orders of magnitude and by raising its corrosion potential by ∼0.4 V. Bias voltage sputtering was required to produce a film with properties that could withstand a sulfuric acid solution. For example, a film sputtered at – 70 V at ambient temperature onto a steel substrate passivated in sulfuric acid solution, whereas the steel was completely active in this solution without the sputtered film. Passive current densities in this case were ∼2x102μA/cm2. In both solutions the improved corrosion resistance was exhibited by films with lower oxygen content and a denser microstructure. Thus a direct correlation between corrosion resistance, microstructure, and composition is shown.

This is a preview of subscription content, access via your institution.


  1. 1

    J. A. Thornton J. Vac. Sci. Technol. 11, 666 (1974).

    CAS  Article  Google Scholar 

  2. 2

    W. D. Westwood, Prog. Surf. Sci. 7, 71 (1976).

    CAS  Article  Google Scholar 

  3. 3

    S. Craig and G. L. Harding, J. Vac. Sci. Technol. 19, 205 (1981).

    CAS  Article  Google Scholar 

  4. 4

    J. H. Brophy, R. M. Rose, and J. Wulff, The Structure and Properties of Materials (Wiley, New York, 1964), Vol. 2.

    Google Scholar 

  5. 5

    B. A. O’Korie and W. B. Nowak, J. Electrochem. Soc. 130, 290 (1983).

    Article  Google Scholar 

  6. 6

    T. Kulik, J. Baszkiewicz, M. Kaminski, J. Latuszkiewicz, and H. Matyja, Corros. Sci. 19, 1001 (1979).

    CAS  Google Scholar 

  7. 7

    T. M. Devine, J. Electrochem. Soc. 124, 38 (1977).

    CAS  Article  Google Scholar 

  8. 8

    R. L. Chance and R. G. Ceselli, General Motors Research Laboratories Publication GMR-4139 (July 1982).

  9. 9

    W. B. Nowak and B. A. Okorie, Corrosion 38(6), 314 (1982).

    CAS  Article  Google Scholar 

  10. 10

    B. A. Okorie and W. B. Nowak, J. Electrochem. Soc. 130(2), 290 (1983).

    CAS  Article  Google Scholar 

  11. 11

    R. B. Diegle and M. D. Merz, J. Electrochem. Soc. 130(9), 2030 (1980).

    Article  Google Scholar 

  12. 12

    R. B. Diegle, D. M. Lineman, and W. K. Boyd, Interim Technical Report, Office of Naval Research Contract No. 0014-77-C-0488, Battelle Columbus Laboratories, Columbus, Ohio, 1 May 1977–30 April 1978.

  13. 13

    M. P. Rosenblum and D. Turnbull, J. Non-Cryst. Solids 37 (1980).

  14. 14

    K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

    Google Scholar 

  15. 15

    J. J. Kim, Diss. Abstr. Int. B 47, 180 (1987).

    Google Scholar 

  16. 16

    R. M. Williams, A. P. Thakoor, S. K. Khana, and W. L. Johnson, J. Electrochem. Soc. 131, 2791 (1984).

    CAS  Article  Google Scholar 

  17. 17

    A. P. Thakoor, S. K. Khanna, R. M. Williams, and R. F. Landel, J. Vac. Sci. Technol. A 1, 520 (1983).

    Article  Google Scholar 

  18. 18

    A. J. Aranson, D. Chen, and W. H. Class, Thin Solid Films 72(3), 535 (1980).

    Article  Google Scholar 

  19. 19

    P. M. Fabis, Thin Solid Films 128 (1–2), 57 (1985).

    CAS  Article  Google Scholar 

  20. 20

    A. Aubert, J. Danroc, A. Gaucher, and J. P. Terrat, Thin Solid Films 126 (1–2), 61 (1985).

    CAS  Article  Google Scholar 

  21. 21

    A. P. Thakoor, J. L. Lamb, R. M. Williams, and S. K. Khanna, J. Vac. Sci. Technol. A 3(3), 600 (1985).

    Article  Google Scholar 

  22. 22

    B. O. Johansson, J. E. Sundgren, J. E. Green, A. Rockett, and A. Barnett, J. Vac. Sci. Technol. A 3(2), 303 (1985).

    Article  Google Scholar 

  23. 23

    R. G. Walmsley, Y. S. Lee, A. F. Marshall, and D. A. Stevenson, J. Non-Cryst. Solids 60–62, 625 (1984).

    Article  Google Scholar 

  24. 24

    J. A. Thornton, Surf. Eng. 2(4), 283 (1986).

    Article  Google Scholar 

  25. 25

    K. Ogura and T. Majima, Electrochim. Acta. 23, 1361 (1978).

    CAS  Article  Google Scholar 

  26. 26

    R. Schulz, N. L. Lee, and B. M. Clemens, J. Mater. Res. 2, 46 (1987).

    CAS  Article  Google Scholar 

  27. 27

    J. L. Vossen, J. Vac. Sci. Technol. 8, 512 (1971).

    Article  Google Scholar 

  28. 28

    J. L. Vossen and J. J. O’Neill, Jr., RCA Rev. 29, 566 (1968).

    CAS  Google Scholar 

  29. 29

    R. Messier and R. C. Ross, J. Appl. Phys. 53, 6220 (1982).

    CAS  Article  Google Scholar 

  30. 30

    A. Barna, P. B. Barna, Z. Bodo, J. F. Pocza, I. Pozsgai, and G. Radnoczi, in Amorphous and Liquid Semiconductors (Taylor and Francis, London, 1974), p. 109.

    Google Scholar 

  31. 31

    A. G. Dirks and H. J. Leamy, Thin Solid Films 47, 219 (1977).

    CAS  Article  Google Scholar 

  32. 32

    F. L. Galeener, Phys. Rev. Lett. 27, 1716 (1971).

    CAS  Article  Google Scholar 

  33. 33

    W. Fuhs, H. J. Heese, and K. H. Langer, in Amorphous and Liquid Semiconductors (Taylor and Francis, London, 1974), p. 79.

    Google Scholar 

  34. 34

    A. Staudinger and S. Nakahara, Thin Solid Films 45, 125 (1977).

    CAS  Article  Google Scholar 

  35. 35

    J. J. Hauser and A. Staudinger, Phys. Rev. B 8, 607 (1973).

    Article  Google Scholar 

  36. 36

    R. A. Roy and R. Messier, J. Vac. Sci. Technol. 2, 312 (1984).

    CAS  Article  Google Scholar 

  37. 37

    J. C. Knights and R. A. Lujan, Appl. Phys. Lett. 35, 244 (1979).

    CAS  Article  Google Scholar 

  38. 38

    J. A. Thornton, J. Vac. Sci. Technol. 11, 66 (1974).

    Article  Google Scholar 

  39. 39

    J. A. Thornton, Thin Solid Films 40, 335 (1977).

    CAS  Article  Google Scholar 

  40. 40

    M. Marinov, Thin Solid Films 46, 267 (1977).

    CAS  Article  Google Scholar 

  41. 41

    E. Eser, R. E. Ogilvie, and K. A. Taylor, Thin Solid Films 67, 265 (1980).

    CAS  Article  Google Scholar 

  42. 42

    J. E. Sundgren, B. O. Johansson, H. T. G. Hentzell, and S. E. Karlsson, Thin Solid Films 105, 385 (1983).

    CAS  Article  Google Scholar 

  43. 43

    R. D. Bland, G. J. Kominiak, and D. M. Mattox, J. Vac. Sci. Technol. 11, 671 (1974).

    CAS  Article  Google Scholar 

  44. 44

    D. M. Mattox and G. J. Kominiak, J. Vac. Sci. Technol. 9, 528 (1972).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Natalia L. Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, N.L., Fisher, G.B. & Schulz, R. Sputter deposition of a corrosion-resistant amorphous metallic coating. Journal of Materials Research 3, 862–871 (1988). https://doi.org/10.1557/JMR.1988.0862

Download citation