Structural phase transition study of Ba2YCu3O6+x in air

Abstract

A structural phase transition study of Ba2YCu3O6+x (x = 0 to 1) has been conducted on a series of 13 quenched samples. These samples were prepared from an orthorhombic material by annealing at temperatures from 400 to 1000 °C in air, followed by rapid quenching. All quenchings were performed by using a liquid-nitrogen-cooled copper cold well with a continuous flow of cooled helium gas. Various measurements including x-ray diffraction, thermogravimetric analysis, Meissner effect, and scanning electron microscopy were carried out in order to correlate the nature of the phase transition with erystallographic data, superconductivity, and annealing temperature. The phase transition from Ba2YCu3,O7 to Ba2YCu3O6 appears to involve two orthorhombic regions: region A with a <b ≈ c/3 below approximately 600 °C and region B with cell parameters of a < b < c/3 from & 600 to 708–720 °C. The transformation from orthorhombic to tetragonal takes place in the temperature range of 708–720 °C. This transition appears to be a second-order, order-disorder type.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J. D. Jorgenson, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zhang, and M. S. Kleefisch, Phys. Rev. B 36, 3608 (1987).

    Article  Google Scholar 

  2. 2

    W. K. Kwok, G. W. Crabtree, A. Umezawa, B. W. Veal, J. D. Jorgensen, S. K. Malik, L. J. Nowicki, A. P. Paulikas, and L. Nunez, “Electronic behavior of oxygen deficient YBa2Cu3O7 − δ” (to be published).

  3. 3

    W. Wong-Ng and L. P. Cook, Adv. Ceram. Mater. 2(3B), 624 (1987).

    CAS  Article  Google Scholar 

  4. 4

    K. Schuller, G. Hinks, M. A. Beno, D. W. Capone, II, L. Soderholm, J. P. Locquet, Y. Bruynseraede, C. U. Segre, and K. Zhang, Solid State Commun. 63, 385 (1987).

    CAS  Article  Google Scholar 

  5. 5

    P. K. Gallagher, H. M. O’Bryan, S. A. Sunshine, and D. W. Murphy, Mater. Res. Bull. 22, 995 (1987).

    CAS  Article  Google Scholar 

  6. 6

    L. P. Cook, C. K. Chiang, W. Wong-Ng, and J. E. Blendell, Adv. Ceram. Mater. 2(3B), 656 (1987).

    CAS  Article  Google Scholar 

  7. 7

    W. Wong-Ng, H. F. McMurdie, B. Paretzkin, Y. Zhang, K. L. Davis, C. R. Hubbard, A. L. Dragoo, and J. M. Stewart, Powder Diff. 2(3), 191 (1987).

    CAS  Article  Google Scholar 

  8. 8

    W. Wong-Ng, R. S. Roth, L. J. Swartzendruber, L. H. Bennet, C. K. Chiang, F. Beech, and C. R. Hubbard, Adv. Ceram. Mater. 2(3B), 565 (1987).

    CAS  Article  Google Scholar 

  9. 9

    R. D. Deslattes and A. Henins, Phys. Rev. Lett. 31, 972 (1973).

    CAS  Article  Google Scholar 

  10. 10

    R. L. Synder, C. R. Hubbard, and N. C. Pyrros, “AUTO: A Real Time Diffractometer Control System Report,” NBSIR 81-2229, United States Department of Commerce (National Bureau of Standards, Gaithersburg, MD, 1981).

  11. 11

    C. R. Hubbard, C. Robbins, and W. Wong-Ng, “Standard Reference Material 640b, Silicon Powder X-ray Diffraction Standard” (National Bureau of Standards, Gaithersburg, MD, 1987). Obtainable from the National Bureau of Standards, Office of Standard Reference Materials, Gaithersburg, MD 20899. Current price will be quoted on request.

  12. 12

    C. R. Hubbard, “Standard Reference Material 675, Fluorophlogopite Powder X-ray Diffraction Standard” (National Bureau of Standards, Gaithersburg, MD, 1987). To obtain, see procedure in Ref. 11.

  13. 13

    W. Wong-Ng and C. R. Hubbard, Powder Diff. 2(4), 242 (1987).

    CAS  Article  Google Scholar 

  14. 14

    H. F. McMurdie, M. C. Morris, E. H. Evans, B. Paretzkin, W. Wong-Ng, and C. R. Hubbard, Powder Diff. 1(1), 40 (1986).

    CAS  Article  Google Scholar 

  15. 15

    N. P. Pyrros and C. R. Hubbard, Adv. X-ray Anal. 26, 63 (1983).

    CAS  Google Scholar 

  16. 16

    D. E. Appleman andH. T. Evans, Jr., Report No. PB216188, United States Department of Commerce (National Technical Information Service, Springfield, VA, 1973).

    Google Scholar 

  17. 17

    Certain commercial materials and equipment are identified in this article to specify the experimental procedure. In no instance does such identification imply recommendation or endorsement by the National Bureau of Standards or imply that the material and equipment identified are necessarily the best available for the purpose.

  18. 18

    C. K. Chiang, L. P. Cook, S. S. Chiang, J. E. Blendell, and R. S. Roth, Adv. Ceram. Mater. 2, 530 (1987).

    CAS  Article  Google Scholar 

  19. 19

    D. K. Finnemore, R. N. Shelton, J. R. Clem. R. W. McCallum, H. D. Ku, R. E. McCarley, S. C. Chen, P. Klavins, and V. Kogan, Phys. Rev. B 35, 5319(1987).

    Article  Google Scholar 

  20. 20

    R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak, and D, Werder, Nature 329, 423 (1987).

    CAS  Article  Google Scholar 

  21. 21

    A. G. Khachaturyan, S. V. Semenovskaya, and J. W. Morris, Jr., Phys. Rev. Lett. (submitted for publication).

  22. 22

    R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, Cryogenics 27, 475 (1987).

    CAS  Article  Google Scholar 

  23. 23

    F. Beech, A. Miraglia, A. Santoro, and R. S. Roth, Phys. Rev. B 35, 8778 (1987).

    Article  Google Scholar 

  24. 24

    S. Miraglia, F. Beech, A. Santoro, D. Tran Qui, S. A. Sunshine, and D. W. Murphy, Mater Res. Bull. 22, 1733 (1987).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Wong-Ng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wong-Ng, W., Cook, L.P., Chiang, C.K. et al. Structural phase transition study of Ba2YCu3O6+x in air. Journal of Materials Research 3, 832–839 (1988). https://doi.org/10.1557/JMR.1988.0832

Download citation