Abstract
A structural phase transition study of Ba2YCu3O6+x (x = 0 to 1) has been conducted on a series of 13 quenched samples. These samples were prepared from an orthorhombic material by annealing at temperatures from 400 to 1000 °C in air, followed by rapid quenching. All quenchings were performed by using a liquid-nitrogen-cooled copper cold well with a continuous flow of cooled helium gas. Various measurements including x-ray diffraction, thermogravimetric analysis, Meissner effect, and scanning electron microscopy were carried out in order to correlate the nature of the phase transition with erystallographic data, superconductivity, and annealing temperature. The phase transition from Ba2YCu3,O7 to Ba2YCu3O6 appears to involve two orthorhombic regions: region A with a <b ≈ c/3 below approximately 600 °C and region B with cell parameters of a < b < c/3 from & 600 to 708–720 °C. The transformation from orthorhombic to tetragonal takes place in the temperature range of 708–720 °C. This transition appears to be a second-order, order-disorder type.
This is a preview of subscription content, access via your institution.
References
- 1
J. D. Jorgenson, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zhang, and M. S. Kleefisch, Phys. Rev. B 36, 3608 (1987).
- 2
W. K. Kwok, G. W. Crabtree, A. Umezawa, B. W. Veal, J. D. Jorgensen, S. K. Malik, L. J. Nowicki, A. P. Paulikas, and L. Nunez, “Electronic behavior of oxygen deficient YBa2Cu3O7 − δ” (to be published).
- 3
W. Wong-Ng and L. P. Cook, Adv. Ceram. Mater. 2(3B), 624 (1987).
- 4
K. Schuller, G. Hinks, M. A. Beno, D. W. Capone, II, L. Soderholm, J. P. Locquet, Y. Bruynseraede, C. U. Segre, and K. Zhang, Solid State Commun. 63, 385 (1987).
- 5
P. K. Gallagher, H. M. O’Bryan, S. A. Sunshine, and D. W. Murphy, Mater. Res. Bull. 22, 995 (1987).
- 6
L. P. Cook, C. K. Chiang, W. Wong-Ng, and J. E. Blendell, Adv. Ceram. Mater. 2(3B), 656 (1987).
- 7
W. Wong-Ng, H. F. McMurdie, B. Paretzkin, Y. Zhang, K. L. Davis, C. R. Hubbard, A. L. Dragoo, and J. M. Stewart, Powder Diff. 2(3), 191 (1987).
- 8
W. Wong-Ng, R. S. Roth, L. J. Swartzendruber, L. H. Bennet, C. K. Chiang, F. Beech, and C. R. Hubbard, Adv. Ceram. Mater. 2(3B), 565 (1987).
- 9
R. D. Deslattes and A. Henins, Phys. Rev. Lett. 31, 972 (1973).
- 10
R. L. Synder, C. R. Hubbard, and N. C. Pyrros, “AUTO: A Real Time Diffractometer Control System Report,” NBSIR 81-2229, United States Department of Commerce (National Bureau of Standards, Gaithersburg, MD, 1981).
- 11
C. R. Hubbard, C. Robbins, and W. Wong-Ng, “Standard Reference Material 640b, Silicon Powder X-ray Diffraction Standard” (National Bureau of Standards, Gaithersburg, MD, 1987). Obtainable from the National Bureau of Standards, Office of Standard Reference Materials, Gaithersburg, MD 20899. Current price will be quoted on request.
- 12
C. R. Hubbard, “Standard Reference Material 675, Fluorophlogopite Powder X-ray Diffraction Standard” (National Bureau of Standards, Gaithersburg, MD, 1987). To obtain, see procedure in Ref. 11.
- 13
W. Wong-Ng and C. R. Hubbard, Powder Diff. 2(4), 242 (1987).
- 14
H. F. McMurdie, M. C. Morris, E. H. Evans, B. Paretzkin, W. Wong-Ng, and C. R. Hubbard, Powder Diff. 1(1), 40 (1986).
- 15
N. P. Pyrros and C. R. Hubbard, Adv. X-ray Anal. 26, 63 (1983).
- 16
D. E. Appleman andH. T. Evans, Jr., Report No. PB216188, United States Department of Commerce (National Technical Information Service, Springfield, VA, 1973).
- 17
Certain commercial materials and equipment are identified in this article to specify the experimental procedure. In no instance does such identification imply recommendation or endorsement by the National Bureau of Standards or imply that the material and equipment identified are necessarily the best available for the purpose.
- 18
C. K. Chiang, L. P. Cook, S. S. Chiang, J. E. Blendell, and R. S. Roth, Adv. Ceram. Mater. 2, 530 (1987).
- 19
D. K. Finnemore, R. N. Shelton, J. R. Clem. R. W. McCallum, H. D. Ku, R. E. McCarley, S. C. Chen, P. Klavins, and V. Kogan, Phys. Rev. B 35, 5319(1987).
- 20
R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak, and D, Werder, Nature 329, 423 (1987).
- 21
A. G. Khachaturyan, S. V. Semenovskaya, and J. W. Morris, Jr., Phys. Rev. Lett. (submitted for publication).
- 22
R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, Cryogenics 27, 475 (1987).
- 23
F. Beech, A. Miraglia, A. Santoro, and R. S. Roth, Phys. Rev. B 35, 8778 (1987).
- 24
S. Miraglia, F. Beech, A. Santoro, D. Tran Qui, S. A. Sunshine, and D. W. Murphy, Mater Res. Bull. 22, 1733 (1987).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wong-Ng, W., Cook, L.P., Chiang, C.K. et al. Structural phase transition study of Ba2YCu3O6+x in air. Journal of Materials Research 3, 832–839 (1988). https://doi.org/10.1557/JMR.1988.0832
Received:
Accepted:
Published:
Issue Date: