Photoionization of helium atoms through a superposition of higher harmonics

  • Imre Ferenc Barna
Article
  • 16 Downloads

Abstract

We present a coupled-channel calculation of two-photon single ionization of helium by a superposition of the 7th to the 13th harmonic of a Ti:sapphire laser. Solving the time-dependent two-electron Schrödinger equation with a coherent polychromatic field, the single-ionization probabilities are calculated. Besides Slater-like orbitals we use regular Coulomb wavepackets in our configurational interaction basis to describe the single- and double-electron continuum. Linearly polarized laser pulses are used in the length gauge within the dipole approximation. We applied cosines squared normalized envelope functions. The pulse intensity is varied between 109 and 1012 W/cm2, the total duration of each harmonics is between 36–49 femtoseconds. Our results are compared to other ab initio calculations, the possible reasons of the discrepancies are discussed.

Keywords

photoionization higher harmonics coupled-channel method 

PACS

32.80.Fb 32.80.Wr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kienberger, E. Gouliemakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloch, U. Kleinberg, U. Heinzmann, M. Drescher and F. Krausz, Nature (London) 427 (2004) 817.CrossRefADSGoogle Scholar
  2. 2.
    N.A. Papadogiannis, L.A.A. Nikolopoulos, D. Charalambidis, G.D. Tsakiris, E. Tzallas and K. Witte, Phys. Rev. Lett. 90 (2003) 133902.CrossRefADSGoogle Scholar
  3. 3.
    S. Laulan and H. Bachau, Phys. Rev. A 68 (2003) 013409.CrossRefADSGoogle Scholar
  4. 4.
    R. Hasbani, E. Cormier and H. Bachau, J. Phys. B: At. Mol. Opt. Phys. 33 (2000) 2101.CrossRefADSGoogle Scholar
  5. 5.
    A. Scrinzi and B. Piraux, Phys. Rev. A 58 (1998) 1310.CrossRefADSGoogle Scholar
  6. 6.
    D. Dundas, K.T. Taylor, J.S. Parker and E.S. Smyth, J. Phys. B: At. Mol. Opt. Phys. 32 (1999) L231.CrossRefADSGoogle Scholar
  7. 7.
    P. Lambropoulos, P. Maragakis and J. Zhang, Phys. Rep. 305 (1998) 203.CrossRefGoogle Scholar
  8. 8.
    I.F. Barna, Ionization of helium in relativistic heavy-ion collisions, Doctoral Thesis, University Giessen, 2002, Giessener Elektronische Bibliothek, http://geb.uni-giessen.de/geb/volltexte/2003/1036.Google Scholar
  9. 9.
    I.F. Barna, N. Grün and W. Scheid, Eur. Phys. J. D 25 (2003) 239.CrossRefADSGoogle Scholar
  10. 10.
    I.F. Barna, K. Tőkési and J. Burgdörfer, J. Phys. B: At. Mol. Opt. Phys. 38 (2005) 1.CrossRefGoogle Scholar
  11. 11.
    I.F. Barna and J.M. Rost, Eur. Phys. J. D 27 (2003) 287.CrossRefADSGoogle Scholar
  12. 12.
    I.F. Barna, Eur. Phys. J. D 33 (2005) 307.CrossRefADSGoogle Scholar
  13. 13.
    I.F. Barna, J. Wang and J. Burgdörfer, Phys. Rev. A 73 (2006) 023402.CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 2006

Authors and Affiliations

  • Imre Ferenc Barna
    • 1
  1. 1.KFKI Atomic Energy Research Institute Thermo-hydraulics DepartmentHungarian Academy of SciencesBudapestHungary

Personalised recommendations