Advertisement

Baseline cold matter effects on J/ω production in AA collisions at RHIC

Article

Abstract

We present baseline calculations of initial-state shadowing and finalstate absorption effects on J/Ψ production in nucleus-nucleus collisions at the Relativistic Heavy Ion Collider. We show predictions for Au+Au and Cu+Cu collisions at √S NN =200 GeV and Cu+Cu collisions at √S NN =62 GeV as a function of the rapidity, y, and the number of binary nucleon-nucleon collisions, N coll.

Keywords

J/Ψ heavy ion collisions 

PACS

24.85.+p 12.38.Bx 25.75.-q 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alessandro et al. (NA50 Collaboration), Eur. Phys. J. C33 (2004) 31.CrossRefGoogle Scholar
  2. 2.
    V. Emel’yanov, A. Khodinov, S.R. Klein and R. Vogt, Phys. Rev. C59 (1999) 1860.CrossRefADSGoogle Scholar
  3. 3.
    R. Vogt, Phys. Rev. C71 (2005) 054902.CrossRefADSGoogle Scholar
  4. 4.
    R. de Cassagnac (PHENIX Collaboration), J. Phys. G 30 (2004) S1341.CrossRefADSGoogle Scholar
  5. 5.
    R.V. Gavai, D. Kharzeev, H. Satz, G. Schuler, K. Sridhar and R. Vogt, Int. J. Mod. Phys. A10 (1995) 3043; G.A. Schuler and R. Vogt, Phys. Lett. B387 (1996) 181.CrossRefADSGoogle Scholar
  6. 6.
    S.R. Klein and R. Vogt, Phys. Rev. Lett. 91 (2003) 142301.CrossRefADSGoogle Scholar
  7. 7.
    R. Vogt, J. Phys. G 37 (2005) S773.CrossRefGoogle Scholar
  8. 8.
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Phys. Lett. B443 (1998) 301.Google Scholar
  9. 9.
    C.W. deJager, H. deVries and C. deVries, Atomic Data and Nuclear Data Tables 14 (1974) 485.CrossRefADSGoogle Scholar
  10. 10.
    K.J. Eskola, V.J. Kolhinen and P.V. Ruuskanen, Nucl. Phys. B535 (1998) 351; K.J. Eskola, V.J. Kolhinen and C.A. Salgado, Eur. Phys. J. C9 (1999) 61.CrossRefADSGoogle Scholar
  11. 11.
    L. Frankfurt, V. Guzey and M. Strikman, Phys. Rev. D71 (2005) 054001.CrossRefADSGoogle Scholar
  12. 12.
    R. Vogt, Nucl. Phys. A700 (2002) 539.CrossRefGoogle Scholar
  13. 13.
    M.J. Leitch et al. (E866 Collaboration), Phys. Rev. Lett. 84 (2000) 3256.CrossRefADSGoogle Scholar
  14. 14.
    R. Vogt, Phys. Rev. C61 (2000) 035203.CrossRefADSGoogle Scholar
  15. 15.
    C. Lourenco et al., in N. Brambilla et al., hep-ph/0412158.Google Scholar
  16. 16.
    D. Kharzeev, M. Nardi and H. Satz, in M. Bedjidian et al., hep-ph/0311048.Google Scholar
  17. 17.
    D. Kharzeev and H. Satz, Phys. Lett. B366 (1996) 316.Google Scholar
  18. 18.
    C. Gerschel and J. Hüfner, Z. Phys. C56 (1992) 71.Google Scholar
  19. 19.
    J.D. Bjorken, Phys. Rev. D27 (1983) 140.ADSCrossRefGoogle Scholar
  20. 20.
    I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A757 (2005) 1; B.B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A757 (2005) 28; J. Adams et al. (STAR Collaboration), Nucl. Phys. A757 (2005) 102; K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A757 (2005) 184.CrossRefGoogle Scholar
  21. 21.
    S. Digal, P. Petreczky and H. Satz, Phys. Lett. B514 (2001) 57; C.-Y. Wong, hep-ph/0408020.Google Scholar
  22. 22.
    See e.g., M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92 (2004) 012001; S. Datta et al., Phys. Rev. D69 (2004) 094507.CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 2006

Authors and Affiliations

  • R. Vogt
    • 1
    • 2
  1. 1.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Physics DepartmentUniversity of CaliforniaDavisUSA

Personalised recommendations