Acta Physica Hungarica

, Volume 24, Issue 1–4, pp 79–83 | Cite as

Correlations and Fluctuations in STAR

  • Gary D. Westfall
  • STAR Collaboration
Article

Summary

We report measurements for the balance function and <i>pt</i> fluctuations from Au+Au collisions at √{<i>sNN</i>} = 20, 130 and 200 GeV as well as p+p and d+Au collisions at √{<i>sNN</i>} = 200 GeV using STAR at RHIC. For Au+Au collisions at 200 GeV, we observe a narrowing of the balance function in central collisions. We observe dynamic <i>pt</i> fluctuations at all incident energies. Observables related to <i>pt</i> fluctuations are similar for peripheral Au+Au collisions and inclusive p+p collisions while central Au+Au collisions deviate significantly from HIJING predictions.

fluctuations RHIC balance function correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Harris and B. Müller, Ann. Rev. Nucl. Part. Sci. 46 (1996) 71.ADSCrossRefGoogle Scholar
  2. 2.
    M. Stephanov, K. Rajagopal and E. Shuryak, Phys. Rev. Lett. 81 (1998) 4816.ADSCrossRefGoogle Scholar
  3. 3.
    M. Stephanov, K. Rajagopal and E. Shuryak, Phys. Rev. D 60 (1999) 114028.ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Voloshin, V. Koch and H.G. Ritter, Phys. Rev. C 60 (1999) 024901.ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Bass, M. Gyulassy, H. Stöcker and W. Greiner, J. Phys. G25 (1999) R1.ADSCrossRefGoogle Scholar
  6. 6.
    S. Jeon and V. Koch, Phys. Rev. Lett. 85 (2000) 2076.ADSCrossRefGoogle Scholar
  7. 7.
    M. Asakawa, U. Heinz and B. Müller, Phys. Rev. Lett. 85 (2000) 2072.ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Bass, P. Danielewicz and S. Pratt, Phys. Rev. Lett. 85 (2000) 2689.ADSCrossRefGoogle Scholar
  9. 9.
    H. Heiselberg, Phys. Rep. 351 (2001) 161.ADSCrossRefGoogle Scholar
  10. 10.
    Zi-wei Lin and C.M. Ko, Phys. Rev. C 64 (2001) 041901.ADSCrossRefGoogle Scholar
  11. 11.
    H. Heiselberg and A.D. Jackson, Phys. Rev. C 63 (2001) 064904.ADSCrossRefGoogle Scholar
  12. 12.
    E.V. Shuryak and M.A. Stephanov, Phys. Rev. C 63 (2001) 064903.ADSCrossRefGoogle Scholar
  13. 13.
    C. Pruneau, S. Gavin and S. Voloshin, Phys. Rev. C 66 (2002) 044904.ADSCrossRefGoogle Scholar
  14. 14.
    M. Stephanov, Phys. Rev. D 65 (2002) 096008.ADSCrossRefGoogle Scholar
  15. 15.
    Q. Liu and T.A. Trainor, Phys. Lett. B 567 (2003) 184.ADSCrossRefGoogle Scholar
  16. 16.
    S. Gavin, nucl-th/0308067.Google Scholar
  17. 17.
    D. Adamova et al. (CERES Collaboration), Nucl. Phys. A 727 (2003) 97.ADSCrossRefGoogle Scholar
  18. 18.
    M.M. Aggarwal et al. (WA98 Collaboration), Phys. Rev. C 65 (2002) 054912.ADSCrossRefGoogle Scholar
  19. 19.
    H. Appelshauser et al. (NA49 Collaboration), Phys. Lett. B 459 (1999) 679.ADSCrossRefGoogle Scholar
  20. 20.
    J. Adams et al. (STAR Collaboration), nucl-ex/0308033.Google Scholar
  21. 21.
    J. Adams et al. (STAR Collaboration), Phys. Rev. C 68 (2003) 044905.ADSCrossRefGoogle Scholar
  22. 22.
    J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 90 (2003) 172301.ADSCrossRefGoogle Scholar
  23. 23.
    K. Adcox et al. (PHENIX Collaboration), Phys. Rev. Lett. 89 (2002) 212301.ADSCrossRefGoogle Scholar
  24. 24.
    K. Adcox et al. (PHENIX Collaboration), Phys. Rev. C 6 (2002) 024901.ADSCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2005

Authors and Affiliations

  • Gary D. Westfall
    • 1
  • STAR Collaboration
  1. 1.Michigan State University, National Superconducting Cyclotron Laboratory, and Department of Physics and AstronomyEast LansingUSA

Personalised recommendations