Advertisement

Robust state preparation in a degenerate four-state system

  • A. Karpati
  • Z. Kis
  • P. Adam
Article

Abstract

A robust method utilizing a combination of optical pumping and a series of coherent excitation processes is developed for preparing any pure and a wide class of mixed quantum states in the decoherence-free ground-state subspace of a degenerate four-state system. For a given pulse sequence the same final state is obtained regardless of the initial state of the system. An example is presented where a pure state is prepared by a series of excitation processes in the two-dimensional dark subspace of the atom.

Keywords

mixed state preparation incoherent coherent 

PACS

32.80.Qk 42.65.Dr 33.80.Be 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.V. Vitanov, M. Fleischhauer, B.W. Shore and K. Bergmann, Adv. Atomic Mol., Opt. Phys. 46 (2001) 55.CrossRefGoogle Scholar
  2. 2.
    N.V. Vitanov, T. Halfmann, B.W. Shore and K. Bergmann, Ann. Rev. Phys. Chem. 52 (2001) 763.CrossRefADSGoogle Scholar
  3. 3.
    N.V. Vitanov and S. Stenholm, Phys. Rev. A 56 (1997) 1463.CrossRefADSGoogle Scholar
  4. 4.
    M. Shapiro and P. Brumer, Principles of the Control of Molecular Processes, Wiley-Interscience, 2003.Google Scholar
  5. 5.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.MATHGoogle Scholar
  6. 6.
    D. Bacon et al., Phys. Rev. A 64 (2001) 062302.CrossRefADSGoogle Scholar
  7. 7.
    R. Somma, G. Ortiz, J.E. Gubernatis, E. Knill and R. Laflamme, Phys. Rev. A 65 (2002) 042323.CrossRefADSGoogle Scholar
  8. 8.
    V.E. Tarasov, J. Phys. A 35 (2002) 5207.CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    A. Kastler, in Nobel Lectures, Physics 1963–1970, Elsevier Publishing Company, Amsterdam, 1972.Google Scholar
  10. 10.
    B.W. Shore, The Theory of Coherent Atomic Excitation, Wiley, N.Y., 1990.Google Scholar
  11. 11.
    J.R. Morris and B.W. Shore, Phys. Rev. A 27 (1983) 906.CrossRefADSGoogle Scholar
  12. 12.
    A. Karpati, Z. Kis and P. Adam, Phys. Rev. Lett. 93 (2004) 193003.CrossRefADSGoogle Scholar
  13. 13.
    E. Arimondo, in Progress in Optics, ed. E. Wolf, Vol. 35, Elsevier, Amsterdam, 1996, p. 257.Google Scholar
  14. 14.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C, Cambridge University Press, 1997.Google Scholar

Copyright information

© Akadémiai Kiadó 2005

Authors and Affiliations

  • A. Karpati
    • 1
  • Z. Kis
    • 1
  • P. Adam
    • 1
    • 2
  1. 1.Department of Nonlinear and Quantum Optics, Research Institute for Solid State Physics and OpticsHungarian Academy of SciencesBudapestHungary
  2. 2.H.A.S. Research Group for Nonlinear and Quantum Optics, and Institute of PhysicsUniversity of PécsPécsHungary

Personalised recommendations