Cronin effect in close-to-midrapidity regions at FNAL and RHIC energies

  • G. G. Barnaföldi
  • P. Lévai
  • G. Papp
  • G. Fai
Article
  • 15 Downloads

Abstract

Cronin effect — nuclear enhancement — on pion production in pA and dAu collisions is investigated in close-to-midrapidity regions, |η|≦1.5. Using a perturbative QCD improved parton model we analyze pion production in pBe and pCu collisions at energies E lab=500, 530 and 800 GeV in fix target FNAL-E706 experiment. Next we perform calculations at RHIC collider energy, √s NN =200 GeV, and the obtained nuclear modification factor for pions, R π dAu is compared to experimental data by PHOBOS. Our description contains conventional nuclear shadowing and multiscattering. Magnitudes and tendencies of the measured data are reproduced properly at the above energies.

Keywords

pQCD intrinsic kT pion production Cronin effect 

PACS

24.85.+p 13.85.Ni 13.85.Qk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Murray et al. (BRAHMS Coll.), J. Phys. G30 (2004) S667.ADSGoogle Scholar
  2. 2.
    B. Back et al. (PHOBOS Coll.), nucl-ex/0406017.Google Scholar
  3. 3.
    G.G. Barnaföldi et al., J. Phys. G30 (2004) S1125.ADSGoogle Scholar
  4. 4.
    D. Kharzeev, Yu. V. Kovchegov, K. Tuchin, hep-ph/0405045.Google Scholar
  5. 5.
    J.W. Cronin et al. (CP Coll.), Phys. Rev. D11 (1975) 3105.ADSGoogle Scholar
  6. 6.
    D. Antreasyan et al. (CP Coll.), Phys. Rev. D19 (1979) 764.ADSGoogle Scholar
  7. 7.
    P.B. Straub et al., Phys. Rev. Lett. 68 (1992) 452.CrossRefADSGoogle Scholar
  8. 8.
    L. Apanasevich et al. (E706 Coll.), Phys. Rev. D68 (2003) 052001.ADSGoogle Scholar
  9. 9.
    G. Alverson et al., (E706 Coll.), Phys. Rev. D48 (1993) 5.ADSCrossRefGoogle Scholar
  10. 10.
    F. Aversa et al., Nucl. Phys. B327 (1980) 105.CrossRefADSGoogle Scholar
  11. 11.
    P. Aurenche et al., Eur. Phys. J. C9 (1999) 109; ibid. C13 (2001) 347.ADSGoogle Scholar
  12. 12.
    G. Papp et al., hep-ph/0212249.Google Scholar
  13. 13.
    R.V. Reid, Ann. Phys. (N.Y.) 50 (1968) 411.CrossRefADSGoogle Scholar
  14. 14.
    P. Lévai et al., nucl-th/0306019.Google Scholar
  15. 15.
    A.D. Martin et al., Eur. Phys. J. C23 (2002) 73.CrossRefADSGoogle Scholar
  16. 16.
    Y. Zhang et al., Phys. Rev. C65 (2002) 034903.CrossRefADSGoogle Scholar
  17. 17.
    J. Rak et al. (PHENIX Coll.), J. Phys. G30 (2004) S1309.ADSGoogle Scholar
  18. 18.
    G.G. Barnaföldi et al., Heavy Ion Phys. 18 (2003) 79.CrossRefGoogle Scholar
  19. 19.
    G. Papp et al., Nucl. Phys. A698 (2002) 627.CrossRefGoogle Scholar
  20. 20.
    A. Accardi et al., hep-ph/0308248.Google Scholar
  21. 21.
    S.J. Li and X.N. Wang, Phys. Lett. B527 (2002) 85.Google Scholar
  22. 22.
    X.N. Wang, Phys. Rev. C61 (2001) 065910.Google Scholar
  23. 23.
    D.F. Geesaman et al., Ann. Rev. Nucl. Part. Sci. 45 (1995) 337.CrossRefADSGoogle Scholar
  24. 24.
    B.A. Kniehl, G. Kramer and B. Pötter, Nucl. Phys. B597 (2001) 337.CrossRefADSGoogle Scholar
  25. 25.
    X. Zhang, G. Fai and P. Lévai, Phys. Rev. Lett. 89 (2002) 272301.CrossRefADSGoogle Scholar
  26. 26.
    S.S. Adler et al. (PHENIX Coll.), Phys. Rev. Lett. 91 (2003) 072303.CrossRefADSGoogle Scholar
  27. 27.
    J. Adams et al. (STAR Coll.), nucl-ex/0408016.Google Scholar
  28. 28.
    G.G. Barnaföldi, to be published in Nucl. Phys. A.Google Scholar

Copyright information

© Akadémiai Kiadó 2005

Authors and Affiliations

  • G. G. Barnaföldi
    • 1
    • 2
  • P. Lévai
    • 1
  • G. Papp
    • 2
  • G. Fai
    • 3
  1. 1.MTA KFKIResearch Institute for Particle and Nuclear PhysicsBudapestHungary
  2. 2.Eötvös UniversityBudapestHungary
  3. 3.Center for Nuclear ResearchKent State UniversityKentUSA

Personalised recommendations