Dynamical simulations of supernovae collapse and nuclear collisions via the test particle method — Similarities and differences



Test particle methods have been applied very successfully to the numerical simulation of heavy ion reactions at intermediate and high beam energies. Here we will show that the same techniques can be used successfully to simulate the dynamics of the collapse of type II supernovae precursors. We will focus special attention on the effects of collective angular momentum on the resulting supernova dynamics.


heavy ion collision test particle simulation particle spectra flow interferometry supernova type II precursor phase space dynamics angular momentum 


24.10.−i 24.10.Lx 25.70.−z 25.75.−q 26.50.+x 97.60.Bw 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.Y. Wong, Phys. Rev. C 25 (1982) 1460.CrossRefADSGoogle Scholar
  2. 2.
    J. Cugnon, T. Mizutani and J. Vandermeulen, Nucl. Phys. A352 (1981) 505.CrossRefGoogle Scholar
  3. 3.
    J. Cugnon, D. Kinet, and J. Vandermeulen, Nucl. Phys. A379 (1982) 553.CrossRefGoogle Scholar
  4. 4.
    G.F. Bertsch, H. Kruse and S. Das Gupta, Phys. Rev. C 29 (1984) 673.CrossRefADSGoogle Scholar
  5. 5.
    W. Bauer, G.F. Bertsch, W. Cassing and U. Mosel, Phys. Rev. C 34 (1986) 2127.CrossRefADSGoogle Scholar
  6. 6.
    G.F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988) 189.CrossRefADSGoogle Scholar
  7. 7.
    P. Danielewicz and G.F. Bertsch, Nucl. Phys. A533 (1991) 712.CrossRefGoogle Scholar
  8. 8.
    H. Kruse et al., Phys. Rev. Lett. 54 (1985) 289.CrossRefADSGoogle Scholar
  9. 9.
    H. Stöcker and W. Greiner, Phys. Rep. 137 (1986) 277.CrossRefADSGoogle Scholar
  10. 10.
    J. Cugnon and M.C. Lemaire, Nucl. Phys. A489 (1988) 781.CrossRefGoogle Scholar
  11. 11.
    P. Schuck et al., Prog. Part Nucl. Phys. 22 (1989) 181.CrossRefADSGoogle Scholar
  12. 12.
    W. Cassing and U. Mosel, Prog. Part. Nucl Phys. 25 (1990) 235.CrossRefADSGoogle Scholar
  13. 13.
    B.A. Li and W. Bauer, Phys. Lett. B254 (1991) 335.Google Scholar
  14. 14.
    S.J. Wang et al., Ann. Phys. (N.Y.) 209 (1991) 251.CrossRefADSGoogle Scholar
  15. 15.
    A. Ono et al., Prog. of Theor. Phys. 87 (1992) 1185.CrossRefADSGoogle Scholar
  16. 16.
    W. Bauer, C.K. Gelbke and S. Pratt, Ann. Rev. Nucl. Part. Sci. 42 (1992) 77.CrossRefADSGoogle Scholar
  17. 17.
    W. Bauer, Prog. in Part. and Nucl. Phys. 30 (1993) 45.CrossRefADSGoogle Scholar
  18. 18.
    W. Bauer, Phys. Rev. Lett. 61 (1988) 2534.CrossRefADSGoogle Scholar
  19. 19.
    A color version of this figure is on the back cover of the Proc. of the 18th Winter Workshop on Nuclear Dynamics, 2002.Google Scholar
  20. 20.
    J. Lattimer and F. Swesty, Nucl. Phys., A535 (1991) 331; Equation of state version 2.7 (ls eos v2.7), Scholar
  21. 21.
    F. Timmes and F. Swesty, Astrophys. J. Suppl. S 126 (2000) 501; Scholar
  22. 22.
    T. Bollenbach, M.S. Thesis, Michigan State University, 2002.Google Scholar
  23. 23.
    T. Bollenbach and W. Bauer, in Exotic Clustering, eds. S. Costa, A. Insolia and C. Tùve, American Institute of Physics Conference Proceedings, Vol. 644, Melville, New York, 2002, p. 219.Google Scholar
  24. 24.
    A. Heger, N. Langer and S. Woosley, Astrophys. J. 528 (2000) 368.CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA

Personalised recommendations