Skip to main content
Log in

Basic phenomena in low-pressure noble gas discharges: The role of heavy particle induced processes

  • Published:
Acta Physica Hungarica Series B, Quantum Electronics

Abstract

We have studied in detail the role of heavy particle processes in the gas phase (fast atom-atom and ion-atom collisions) and at the electrode surfaces (impact of fast atoms and ions on the metal surface) in low pressure He and Ar d.c. discharges by means of computer simulation and experiments. Our numerical studies have been based on Monte Carlo and hybrid (Monte Carlo + fluid) simulations. We have quantified the contributions of these processes to the characteristic breakdown behavior (Paschen curve) of He discharges, the complex self-sustainment mechanism of a low pressure, 4000 Volt helium discharge and the characteristic light emission profiles of Ar discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Lieberman and A.J. Lichtenberg, Principles of plasma discharges and material processing, John Wiley & Sons, New York, 1994.

    Google Scholar 

  2. C.S. Willett, Introduction to gas lasers: population inversion mechanisms with emphasis on selective excitation processes, Pergamon Press, 1994.

  3. T. Cserfalvi and P. Mezei, J. Anal. At. Spectrom. 18 (2003) 596.

    Article  Google Scholar 

  4. P. Jani, A. Nagy and A. Czitrovszky, J. Aerosol Sci. 27s (1996) 531.

    Article  Google Scholar 

  5. W.W. Szymanski, A. Nagy, A. Czitrovszky and P. Jani, Meas. Sci. Technol. 13 (2002) 303.

    Article  ADS  Google Scholar 

  6. H. Tagashira, Y. Sakai and S. Sakamoto, J. Phys. D: Appl. Phys. 10 (1977) 1051.

    Article  ADS  Google Scholar 

  7. R. Winkler, G. Petrov, F. Sigeneger and D. Uhrlandt, Plasma Sources Sci. Technol. 6 (1997) 118.

    Article  ADS  Google Scholar 

  8. D. Uhrlandt, M. Schmidt, J.F. Behnke and T. Bindemann, J. Phys. D: Appl. Phys. 33 (2000) 2475.

    Article  ADS  Google Scholar 

  9. M. Hannemann, P. Hardt, D. Loffhagen, M. Schmidt and R. Winkler, Plasma Sources Sci. Technol. 9 (2000) 387.

    Article  ADS  Google Scholar 

  10. C.M. Ferreira and J. Loureiro, Plasma Sources Sci. Technol. 9 (2000) 528.

    Article  ADS  Google Scholar 

  11. I.A. Porokhova, Yu.B. Golubovskii, J. Bretagne, M. Tichy and J.F. Behnke, Phys. Rev. E 63 (2001) 056408.

    Article  ADS  Google Scholar 

  12. Y. Sakai, H. Tagashira and S. Sakamoto, J. Phys. D: Appl. Phys. 10 (1977) 1035.

    Article  ADS  Google Scholar 

  13. J.P. Boeuf and E. Marode, J. Phys. D 15 (1982) 2169.

    Article  ADS  Google Scholar 

  14. A. Fiala, L.C. Pitchford and J.P. Boeuf, Phys. Rev. E 49 (1994) 5607.

    Article  ADS  Google Scholar 

  15. J.P. Boeuf and L.C. Pitchford, IEEE Trans. Plasma Sci. 19 (1991) 286.

    Article  ADS  Google Scholar 

  16. A. Bogaerts and R. Gijbels, J. Appl. Phys. 87 (2000) 8334.

    Article  ADS  Google Scholar 

  17. E.W. Thomas, Oak Ridge Nat. Lab. Report ORNL-6088/V3 (1985) E-10.

  18. H.D. Hagstrum,Phys. Rev. 89 (1953) 252.

    Article  ADS  Google Scholar 

  19. S. Thomas and E.B. Pattison, J. Phys. D 3 (1970) 349.

    Article  ADS  Google Scholar 

  20. A. Bogaerts, M. van Straaten and R. Gijbels, Spectrochim. Acta 50B (1995) 179.

    ADS  Google Scholar 

  21. Z. Donkó, Phys. Rev. E 64 (2001) 026401.

    Article  ADS  Google Scholar 

  22. I. Revel, L.C. Pitchford and J.P. Boeuf, J. Appl. Phys. 88 (2000) 2234.

    Article  ADS  Google Scholar 

  23. H. Matsuo and M. Kando, unpublished (2002).

  24. A. Bogaerts and R. Gijbels, J. Appl. Phys. 78 (1995) 6427.

    Article  ADS  Google Scholar 

  25. A. Bogaerts, Plasma Sources Sci. Technol. 8 (1999) 210.

    Article  ADS  Google Scholar 

  26. F.M. Penning, Proc. Roy. Acad. Amst. 34 (1931) 1305.

    Google Scholar 

  27. J.M. Meek and J.D. Craags, Electrical Breakdown of Gases, 1953. Clarendon Press, Oxford.

    MATH  Google Scholar 

  28. A.L. Ward and E. Jones, Phys. Rev. 122 (1961) 376.

    Article  ADS  Google Scholar 

  29. L.G. Guseva, On Discharge Striking in Polyatomic Gases at (pd) < (pd) min, in Investigations into Electrical Discharges in Gases, ed. B.N. Klyarfeld, Macmillan, New York, 1964.

    Google Scholar 

  30. I.M. Bortnik, Sov. Phys. Tech. Phys. 13 (1968) 769.

    Google Scholar 

  31. M.J. Schönhuber, IEEE Trans. Power Apparatus and Systems PAS-88 (1969) 100.

    Article  Google Scholar 

  32. A.B. Parker and P.C. Johnson, Proc. Roy. Soc. Lond. A 325 (1971) 511.

    Article  ADS  Google Scholar 

  33. H. Hillmann, F. Müller and H. Wenz, Plasma Sources Sci. Tech. 3 (1994) 496.

    Article  ADS  Google Scholar 

  34. G. Auday, Ph. Guillot, G. Galy and H. Brunet, J. Appl. Phys. 83 (1998) 5917.

    Article  ADS  Google Scholar 

  35. B.M. Jelenković and A.V. Phelps, Bull. Am. Phys. Soc. 43 (1998) 51432

    Google Scholar 

  36. G. Francis, The Glow Discharge at Low Pressure, Encyclopedia of Physics, ed. S. Flügge, 1956, Springer Verlag.

  37. J.C. Nickel, K. Imre, D.F. Register and S. Trajmar S, J. Phys. B: At. Mol. Phys. 18 (1985) 125.

    Article  ADS  Google Scholar 

  38. F.J. de Heer and R.H.J. Jansen, J. Phys. B: At. Mol. Phys. 10 (1977) 3741.

    Article  ADS  Google Scholar 

  39. W.H. Cramer and J.H. Simons, J. Chem. Phys. 26 (1985) 1272.

    Article  ADS  Google Scholar 

  40. R. Okasaka, Y. Konishi, Y. Sato and K. Fukuda 1987, J. Phys. B: At. Mol. Phys. 20 (1987) 3771.

    Article  ADS  Google Scholar 

  41. H.B. Gilbody and J.B. Hasted, Proc. Roy. Soc. A 240 (1957) 382.

    Article  ADS  Google Scholar 

  42. J.E. Jordan and I. Amdur, J. Chem. Phys 46 (1967) 165.

    Article  ADS  Google Scholar 

  43. V. Kempter, F. Veith and L. Zehnle, J. Phys. B 8 (1975) 1041.

    Article  ADS  Google Scholar 

  44. H.C. Hayden and N.G. Utterback, Phys. Rev. 135 (1964) A1575.

    Article  ADS  Google Scholar 

  45. H.P. Myers, Proc. Roy. Soc. A. 215 (1952) 329.

    Article  ADS  Google Scholar 

  46. G.A. Harrower, Phys. Rev. 104 (1956) 52.

    Article  ADS  Google Scholar 

  47. E.H. Darlington and V.E. Cosslett, J.Phys. D: Appl. Phys. 5 (1972) 1969.

    Article  ADS  Google Scholar 

  48. C. Jardin, S. Kessas, B. Khelifa, P. Bondott and B. Gruzza, J. Phys. D 24 (1991) 1115.

    Article  ADS  Google Scholar 

  49. P. Hartmann, Z. Donkó, G. Bánó, L. Szalai and K. Rózsa, Plasma Sources Sci. Technol. 9 (2000) 183.

    Article  ADS  Google Scholar 

  50. M. Surendra, D.B. Graves and G.M. Jellum, Phys. Rev. A 41 (1990) 1112.

    Article  ADS  Google Scholar 

  51. A.V. Phelps, Z.Lj. Petrović and B.M. Jelenković, Phys. Rev. E 47 (1993) 2825.

    Article  ADS  Google Scholar 

  52. F. Sigeneger and R. Winkler, Eur. Phys. J. A 19 (2002) 211.

    Article  Google Scholar 

  53. A.V. Phelps, Plasma Sources Sci. Technol. 10 (2000) 329.

    Article  ADS  Google Scholar 

  54. M. Fukao, M. Ishida, Y. Ohtsuka and H. Matsuo, Vacuum 59 (2000) 358.

    Article  Google Scholar 

  55. Y. Ohtsuka, unpblished.

  56. H. Matsuo, Y. Ohtsuka and M. Fukao, Proc. ESCAMPIC-16/ICRP-5 Conf., Grenoble, France, 2002, Vol. 2, p. 73.

  57. P. Hartmann, H. Matsuo, Y. Ohtsuka, M.Fukao, M. Kando and Z. Donkó, Jpn. J. Appl. Phys. 42 (2003) 3633.

    Article  ADS  Google Scholar 

  58. A. Bogaets, R. Gijbels and W.J. Goedheer, Anal. Chem. 68 (1996) 2296.

    Article  Google Scholar 

  59. E. Shidoji, H. Ohtake, N. Nakano and T. Makabe, Jpn. J. Appl. Phys. 38 (1999) 2131.

    Article  ADS  Google Scholar 

  60. E. Shidoji, N. Nakano and T. Makabe, Thin Solid Films 351 (1999) 37.

    Article  ADS  Google Scholar 

  61. E. Shidoji, K. Ness and T. Makabe, Wacuum 60 (2001) 299.

    Google Scholar 

  62. Z. Donkó, J. Appl. Phys. 88 (2000) 2226.

    Article  ADS  Google Scholar 

  63. A.V. Phelps, Collision Data Complication, ftp://jila.colorado.edu/collision_data.

  64. J.P. Boeuf and L.C. Pitchford, J. Phys. D: Appl. Phys. 28 (1995) 2083.

    Article  ADS  Google Scholar 

  65. D. Marić, K. Kutasi, G. Malović, Z. Donkó and Z.Lj. Petrović, Eur. Phys. J. D 21 (2002) 73.

    Article  ADS  Google Scholar 

  66. K. Rózsa, A. Gallagher and Z. Donkó, Phys. Rev. E 52 (1995) 913.

    Article  ADS  Google Scholar 

  67. D. Marić, P. Hartmann, G. Malović, Z. Donkó and Z.Lj. Petrović, J. Phys. D 36 (2003) 2639.

    Article  ADS  Google Scholar 

  68. A.V. Phelps, J. Phys. Chem. Ref. Data 20 (1991) 557.

    Article  ADS  Google Scholar 

  69. A.V. Phelps, J. Appl. Phys. 76 (1994) 747.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, P., Donkó, Z. Basic phenomena in low-pressure noble gas discharges: The role of heavy particle induced processes. Acta Phys. Hung. B 20, 193–217 (2004). https://doi.org/10.1556/APH.20.2004.3-4.5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1556/APH.20.2004.3-4.5

Keywords

PACS

Navigation