Squeezed states, gauge invariance and Wigner functions of a particle in a homogeneous magnetic field

  • M. G. Benedict
  • A. Czirják
  • F. M. Peeters


We construct new types of stationary states for a particle in a homogeneous magnetic field, called states with squeezed center. In the limit of infinite squeezing we get back the Landau states, while in the case of zero squeezing we have the quasi-classically centered states. Usually the two limiting cases are obtained in different gauges, and this thought to be the essential difference between them. We show that actually a different choice of a good quantum number makes the distinction. We find the Wigner functions of these states, which being gauge invariant demonstrates explicitly this statement.


squeezed states Wigner function magnetic field 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.H. Johnson and B.A. Lippman. Phys. Rev. 76 (1949) 828.CrossRefMATHADSGoogle Scholar
  2. 2.
    C. Cohen Tannoudji, B. Diu and F. Laloë, Quantum Mechanics, Paris, Wiley and Hermann, 1977.Google Scholar
  3. 3.
    I.A. Malkin and V.I. Man’ko, Zh. Eksp. Teor. Fiz. 55 (1968) 1014 [Sov. Phys. — JETP 28 (1969) 527].Google Scholar
  4. 4.
    S. Varró, J. Phys. A: Math. Gen. 17 (1984) 1632.CrossRefADSGoogle Scholar
  5. 5.
    D. Walls and J. Milburn, Quantum Optics, Berlin. Springer, 1994.MATHGoogle Scholar
  6. 6.
    M.O. Scully and M.S. Zubairy. Quantum Optics, Cambridge, Cambridge University Press, 1997.Google Scholar
  7. 7.
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory, Oxford, Pergamon, 1965.Google Scholar
  8. 8.
    H.P. Yuen, Phys. Rev. A13 (1976) 2226.CrossRefADSGoogle Scholar
  9. 9.
    J.J. Gong and P.K. Aravind, Am. J. Phys. 58 (1990) 1003.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    I.S. Gradsteyn and I.M. Ryzhik, Table of Integrals, Series and Products, 5th ed., San Diego, Academic.Google Scholar
  11. 11.
    E.P. Wigner, Phys. Rev. 40 (1932) 749.CrossRefMATHADSGoogle Scholar
  12. 12.
    J.E. Moyal, Proc. Cambridge Philos. Soc. 45 (1949) 99.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    O.T. Serimaa, J. Javanainen and S. Varró, Phys. Rev. A33 (1986) 2913; J. Javanainen, S. Varró and O.T. Serimaa, Phys. Rev. A35 (1987) 2791.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • M. G. Benedict
    • 1
  • A. Czirják
    • 1
  • F. M. Peeters
    • 2
  1. 1.Department of Theoretical PhysicsUniversity of SzegedSzegedHungary
  2. 2.Physics DepartmentUniversiteit Antwerpen (UIA)AntwerpenBelgium

Personalised recommendations