Deformation quantization, superintegrability and Nambu mechanics

  • Cosmas K. Zachos
  • Thomas L. Curtright
Article

Abstract

Phase Space is the framework best suited for quantizing superintegrable systems—systems with more conserved quantities than degrees of freedom. In this quantization method, the symmetry algebras of the hamiltonian invariants are preserved most naturally. We illustrate the power and simplicity of the method through new applications to nonlinear σ-models, specifically for Chiral Models and de Sitter N-spheres, where the symmetric quantum hamiltonians amount to compact and elegant expressions, in accord with the Groenewold-van Hove theorem. Additional power and elegance is provided by the use of Nambu Brackets (linked to Dirac Brackets) involving the extra invariants of superintegrable models. The quantization of Nambu Brackets is then successfully compared to that of Moyal, validating Nambu’s original proposal, while invalidating other proposals.

Keywords

deformation quantization superintegrability Nambu Brackets 

PACS

02.30.Ik 11.30.Rd 11.30.-j 

References

  1. 1.
    T. Curtright and C. Zachos, New J. Phys. 4 (2002) 83.1–16 [hep-th/0205063].CrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Tempesta, A. Turbiner and P. Winternitz, J. Math. Phys. 42 (2001) 4248 [hep-th/0011209]; M. Rodriguez and P. Winternitz, J. Math. Phys. 43 (2002) 1309 [math-ph/0110018]; E. Kalnins, J. Kress and P. Winternitz, J. Math. Phys. 43 (2002) 970 [math-ph/0108015].MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    G. Velo and J. Wess, Nuovo Cim. A1 (1971) 177; H. Lin, W. Lin and R. Sugano, Nucl. Phys. B16 (1970) 441; M. Lakshmanan and K. Eswaran, J. Phys. A8 (1975) 1658; also see A. Leznov, Nucl. Phys. B640 (2002) 469 [hep-th/0203225]; P. Higgs, J. Phys. A12 (1979) 309; H. Leemon, J. Phys. A12 (1979) 489.CrossRefADSGoogle Scholar
  4. 4.
    J. Moyal, Proc. Camb. Phil. Soc. 45 (1949) 99.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Curtright, D. Fairlie and C. Zachos, Phys. Rev. D58 (1998) 025002.MathSciNetADSGoogle Scholar
  6. 6.
    C. Zachos, Int. J. Mod. Phys. A17 (2002) 297 [hep-th/0110114]; J.P. Dahl, Adv. Quantum Chem. 39 1 (2001).MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    H. Groenewold, Physica 12 (1946) 405; also see B. Leaf, J. Math. Phys. 9 (1968) 65.MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    L. van Hove, Proc. R. Acad. Sci. Belgium 26 (1951) 1.Google Scholar
  9. 9.
    H. Weyl, Z. Phys. 46 (1927) 1; also reviewed in H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York, 1931.CrossRefADSGoogle Scholar
  10. 10.
    J. Hietarinta, J. Math. Phys. 25 (1984) 1833.CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Y. Nambu, Phys. Rev. D7 (1973) 2405.MathSciNetADSGoogle Scholar
  12. 12.
    J. Hietarinta, J. Phys. A30 (1997) L27; N. Mukunda and E. Sudarshan, Phys. Rev. D13 (1976) 2846; R. Chatterjee, Lett. Math. Phys. 36 (1996) 117; Y. Nutku, Quantization with Nambu-Poisson brackets, preprint; C. Gonera and Y. Nutku, Phys. Lett. A285 (2001) 301.MATHMathSciNetADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • Cosmas K. Zachos
    • 1
  • Thomas L. Curtright
    • 2
  1. 1.High Energy Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of PhysicsUniversity of MiamiCoral GablesUSA

Personalised recommendations