Acta Physica Hungarica A) Heavy Ion Physics

, Volume 19, Issue 3–4, pp 353–364 | Cite as

From wigner’s supermultiplet theory to quantum chromodynamics

  • O. W. Greenberg


The breadth of Eugene Wigner’s interests and contributions is amazing and humbling. At different times in his life he did seminal work in areas as diverse as pure mathematics and chemical engineering. His seminal research in physics is, of course, the best known. In this talk I first describe Wigner’s supermultiplet theory of 1936 using the approximate symmetry of the nuclear Hamiltonian under a combined spin-isospin symmetry to describe the spectroscopy of stable nuclei up to about the nucleus molybdenum. I then show how Wigner’s ideas of 1936 have had far reaching and unexpected implications: his ideas led to the discovery of the color degree of freedom for quarks and to the symmetric quark model of baryons which is the basis of baryon spectroscopy. I conclude by pointing out that the color degree of freedom, made into a local symmetry using Yang-Mills theory, leads to the gauge theory of color, quantum chromodynamics, which is our present theory of the strong interactions.


quarks internal symmetries color baryons quantum chromodynamics 


01.65.+g 03.b5.Fd 12.39.Jh 14.20.-c 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. F. Gürsey, Gordon and Breach New York, 1964.Google Scholar
  2. 2.
    E.P. Wigner, op. cit., p. 37.Google Scholar
  3. 3.
    O.W. Greenberg and E.P. Wigner, Phys. Today 16 (1963) 62.CrossRefGoogle Scholar
  4. 4.
    E.P. Wigner, Phys. Rev. 51 (1937) 105.ADSGoogle Scholar
  5. 5.
    F. Gürsey and L.A. Radicati, Phys. Rev. Lett. 13 (1964) 173.CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    M. Gell-Mann, Phys. Lett. 8 (1964) 214.CrossRefADSGoogle Scholar
  7. 7.
    G. Zweig, CERN 8182/TH401 and 8419/TH412 (1964).Google Scholar
  8. 8.
    W. Pauli, Ann. Inst. Henri Poincaré 6 (1936) 137.MATHMathSciNetGoogle Scholar
  9. 9.
    B. Sakita, Phys. Rev. 136B (1964) 1756.CrossRefMathSciNetGoogle Scholar
  10. 10.
    M.A.B. Bég, B.W. Lee and A. Pais, Phys. Rev. Lett. 13 (1964) 514, Erratum 650.CrossRefADSGoogle Scholar
  11. 11.
    B. Sakita, Phys. Rev. Lett. 13 (1964) 643.CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    H.S. Green, Phys. Rev. 90 (1953) 270.MATHCrossRefADSGoogle Scholar
  13. 13.
    O.W. Greenberg and A.M.L. Messiah, Phys. Rev. B138 (1965) 1155.CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    S. Doplicher, R. Haag and J. Roberts, Commun. Math. Phys. 23 (1971) 199 and S. Doplicher, R. Haag and J. Roberts, Commun. Math. Phys. 35 (1974) 49.CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    R. Haag, Local Quantum Physics, Springer-Verlag, Berlin, 1992.MATHGoogle Scholar
  16. 16.
    E.P. Wigner, Phys. Rev. 77 (1950) 711.MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    G.-F. Dell’Antonio, O.W. Greenberg and E.C.G. Sudarshan, in Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. F. Gürsey, Gordon and Breach, New York, 1965, p. 403.Google Scholar
  18. 18.
    O.W. Greenberg, Phys. Rev. Lett. 13 (1964) 598.CrossRefADSGoogle Scholar
  19. 19.
    Y. Nambu, in Symmetry Principles at High Energy, pp. 274–285, eds. B. Kursunoglu, A. Perlmutter and I. Sakmar, Freeman, San Francisco, 1965.Google Scholar
  20. 20.
    M.-Y. Han and Y. Nambu, Phys. Rev. 139 (1965) B1006.CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Y. Nambu, in Preludes in Theoretical Physics, eds. A. de Shalit, H. Feshbach and L. Van Hove, North Holland, Amsterdam, 1966, p. 133.Google Scholar
  22. 22.
    Y. Nambu and M.-Y. Han, Phys. Rev. 10 (1974) 674.ADSGoogle Scholar
  23. 23.
    G. Karl and E. Obryk, Nucl. Phys. B8 (1968) 609.CrossRefADSGoogle Scholar
  24. 24.
    O.W. Greenberg and M. Resnikoff, Phys. Rev. 163 (1967) 1844.CrossRefADSGoogle Scholar
  25. 25.
    A. De Rujula, H. Georgi and S. Glashow, Phys. Rev. D12 (1975) 147.CrossRefGoogle Scholar
  26. 26.
    N. Isgur and G. Karl, in Recent Developments in High-Energy Physics, eds. A. Perlmutter and L.F. Scpott, Plenum, New York, 1980, p. 61.Google Scholar
  27. 27.
    E. Jenkins, Ann. Rev. Nucl. Part. Sci. 48 (1998) 81.CrossRefADSGoogle Scholar
  28. 28.
    A. Pais, in Recent Developments in Particle Symmetries, ed. A. Zichichi, Academic Press, New York, 1966, p. 406.Google Scholar
  29. 29.
    D.B. Lichtenberg, Unitary Symmetry and Elementary Particles, Academic, New York, 1970. p. 227.Google Scholar
  30. 30.
    M. Gell-Mann, in Elementary Particle Physics, ed. P. Urban, Springer, Vienna, 1972; Acta Phys. Austriaca Supp 9 (1972) 733.Google Scholar
  31. 31.
    W.A. Bardeen, H. Fritzsch and M. Gell-Mann, in Scale and Conformal Symmetry in Hadron Physics, ed. R. Gatto, Wiley, New York, 1973, p. 139.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Department of PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations