Acta Physica Hungarica A) Heavy Ion Physics

, Volume 19, Issue 3–4, pp 241–246 | Cite as

Symmetry and “Magic” Numbers or from the pythagoreans to Eugene Wigner

  • Yuval Ne’eman


I trace the evolution of the scientific world view in general and of the variational approach specifically, including transformation groups I then review the impact of these ideas at the atomic, nuclear and particle levels.


symmetry laws of nature variational calculus action principle Pythagoreanism path-integral Noether theorems music of the spheres 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Ne’eman, “Plato and the Self-Geometrization of Physics in the Twentieth Century”, in Functional Differential Equations 5 (1998) #3-4, p. 19–34. (Talk delivered at the International Conf. on Diff. Eqs., Ariel, Israel, 1998).Google Scholar
  2. 2.
    Y. Ne’eman, “Insight and Foresight in Physics: From Plato and Aristotle to Einstein and the Standard Model”, in Nuclear Matter, Hot and Cold (Proc. Tel-Aviv Conf. In Mem. of Judah Eisenberg, April 1999), J. alster and D. Ashery, eds., Tel-Aviv Univ. Pub., 2000, 286 pp., p. 12–22.Google Scholar
  3. 3.
    Y. Ne’eman, “Pythagorean and Platonic Conceptions in XXth Century Physics”, in Visions in Mathematics 2000, V. Milman et al., eds. GAFA, Geom. Funct. Anal., Birkhäuser Verlag, Basel, 2000, p. 383–405.Google Scholar
  4. 4.
    W. Yourgrou and S. Mandelstam, Variational Principles in Dynamics and Quantum Theory, Dover Pub., New York 1968, 201 pp.Google Scholar
  5. 5.
    See for example G. t’Hooft and M. Veltman, Diagammar, CERN TH 73-9.Google Scholar
  6. 6.
    H.A. Kastrup, in Symmetries in Physics (1600–1980), M.G. Doncel, ed., Univ. Barcelona Pub. (1987) 113–164.Google Scholar
  7. 7.
    E. Noether, Nach. d. Kgl. Ges. d. Wiss., Math. Phys. Klass. 2 (1918) 17.Google Scholar
  8. 8.
    H. Weyl, Zeit. Physik 56 (1921) 350.Google Scholar
  9. 9.
    C.N. Yang and R.L. Mills, Phys. Rev. 96 (1954) 191.CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    H. Weyl, “Preface”, in The Theory of Groups and Quantum Mechanics, 2nd revsd German edition.Google Scholar
  11. 11.
    E.E. Helm, “The Vibrating String of the Pythagoreans”, Scientific Amer. 217 (Dec. 1967) 92–103.CrossRefGoogle Scholar
  12. 12.
    W. Thomson, Baron Kelvin, “Dark Clouds over XIXth Century Physics”, The Philosophical Magazine and J. of Sci. II, 6th series (1901) 1–31.Google Scholar
  13. 13.
    E. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz Group, “Ann. Math. 40 (1939) 149–204.CrossRefMathSciNetGoogle Scholar
  14. 14.
    M.A. Naimark, Uspekhi Mat. Nauk 9 (1954) 19.MathSciNetMATHGoogle Scholar
  15. 15.
    V. Bargmann and E. Wigner, “Group theoretical Discussion of Relativistic Wave Equations”, P.N.A.S. USA 34 (1946) 211–223.CrossRefMathSciNetGoogle Scholar
  16. 16.
    E. Wigner, “On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei”, Phys. Rev. 51 (1937) 106–119.MATHCrossRefADSGoogle Scholar
  17. 17.
    Y. Ne’eman, “Derivation of Strong Interactions from a Gauge Invariance”, Nucl. Phys. 26 (1961) 222–229.CrossRefMathSciNetGoogle Scholar
  18. 18.
    E. Wigner, Symmetries and Reflections, Ox Bow Press, Woodridge Course, 1979, p. 24.Google Scholar
  19. 19.
    F. Gürsey and L.A. Radicati, “Spin and Unitary Spin Independence of Strong Interactions”, Phys. Rev. Lett. 13 (1964) 173–175.CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    E.M. Levin and L.L. Frankfurt, JETP Lett. 2 (1965) 105–108.ADSGoogle Scholar
  21. 21.
    F. Gürsey, A. Pais and L.A. Radicati, “Spin and Unitary Spin of Strong Interactions”, Phys. Rev. Lett. 13 (1964) 299–301.CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    H. Goldberg and Y. Ne’eman, “Baryon Charge and R-Inversion in the Octet Model”, Nuovo Cimento 27 (1963) 1–5.CrossRefGoogle Scholar
  23. 23.
    E. Wigner, “Epistemology of Quantum Mechanics”, in Contemporary Physics, Trieste Symp., 1968, A. Salam and L. Fonda, eds., IAEC pub., Vol. II, 431–437.Google Scholar
  24. 24.
    G. Marx, The Voice of the Martians, Akadémiai Kiadó, Budapest, 1994, 414 pp.Google Scholar
  25. 25.
    Y. Ne’eman, “Edward Teller, the Hungarian, American and Jew, too”, Heavy Ion Phys. 7 (1998) 155–165.Google Scholar
  26. 26.
    Y. Ne’eman, “Elementary Constituents — Fields or Particle States?” Heavy Ion Phys. 3 (1996) 131–134. Hungarian translation in Fizikai Szemle XLV (1995) 330–331.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • Yuval Ne’eman
    • 1
    • 2
  1. 1.Tel-Aviv UniversityTel-AvivIsrael
  2. 2.University of TexasAustinUSA

Personalised recommendations