Highly correlated vacuum and the production of exotic clusters

  • Walter Greiner
  • Thomas Bürvenich


We discuss the possibility of producing a new kind of nuclear system by putting a few antibaryons inside ordinary nuclei. The structure of such systems is calculated within the relativistic mean-field model assuming that the nucleon and antinucleon potentials are related by the G-parity transformation. The presence of antinucleons leads to decreasing vector potential and increasing scalar potential for the nucleons. As a result, a strongly bound system of high density is formed. Due to the significant reduction of the available phase space the annihilation probability might be strongly suppressed in such systems.


relativistic mean-field model antibaryons finite nuclei production of exotic clusters 


21.30.Fe 24.10.Jv 25.43.+t 27.20.+n 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bürvenich, I.N. Mishustin, L.M. Satarov, J.A. Maruhn, H. Stöcker and W. Greiner, Phys. Lett. B 542/3–4 (2002) 261.Google Scholar
  2. 2.
    B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16 (1985) 1.Google Scholar
  3. 3.
    P.-G. Reinhard, Rep. Prog. Phys. 52 (1989) 439.CrossRefADSGoogle Scholar
  4. 4.
    N. Auerbach, A.S. Goldhaber, M.B. Johnson, L.D. Miller and A. Picklesimer, Phys. Lett. B 182 (1986) 221.CrossRefADSGoogle Scholar
  5. 5.
    I.N. Mishustin, Sov. J. Nucl. Phys. 52 (1990) 722.Google Scholar
  6. 6.
    I.N. Mishustin, L.M. Satarov, J. Schaffner, H. Stöcker and W. Greiner, J. Phys. G19 (1993) 1303.ADSGoogle Scholar
  7. 7.
    O.D. Dalkarov, V.B. Mandelzweig and I.S. Shapiro, Nucl. Phys. B21 (1970) 66.CrossRefGoogle Scholar
  8. 8.
    G. Lalazissis, J. König and P. Ring, Phys. Rev. C55 (1997) 540.CrossRefADSGoogle Scholar
  9. 9.
    M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn and W. Greiner, Phys. Rev. C60 (1999) 34304.CrossRefADSGoogle Scholar
  10. 10.
    Y. Sugahara and H. Toki, Nucl. Phys. A579 (1994) 557.CrossRefGoogle Scholar
  11. 11.
    M. Bender, K. Rutz, P.-G. Reinhard and J.A. Maruhn, Eur. Phys. J. A8 (2000) 59.ADSGoogle Scholar
  12. 12.
    K. Rutz, M. Bender, P.-G. Reinhard, J.A. Maruhn and W. Greiner, Nucl. Phys. A634 (1998) 67.CrossRefGoogle Scholar
  13. 13.
    Y. Akaishi and T. Yamazaki, Phys. Rev. C65 (2002) 044005.CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    C.B. Dover, T. Gutsche, M. Maruyama and A. Faessler, Prog. Part. Nucl. Phys. 29 (1992) 87.CrossRefADSGoogle Scholar
  15. 15.
    C. Amsler, Rev. Mod. Phys. 70 (1998) 1293.CrossRefADSGoogle Scholar
  16. 16.
    J. Sedlák and V. Širnák, Sov. J. Part. Nucl. 19 (1988) 191.Google Scholar
  17. 17.
    R.C. Hwa, Phys. Rev. Lett. 52 (1984) 492.CrossRefADSGoogle Scholar
  18. 18.
    L.P. Csernai and J.I. Kapusta, Phys. Rev. D29 (1984) 2664.ADSCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2003

Authors and Affiliations

  • Walter Greiner
    • 1
  • Thomas Bürvenich
    • 1
  1. 1.Institut für Theoretische PhysikJ.W. Goethe-UniversitätFrankfurtGermany

Personalised recommendations