The critical exponent of nuclear fragmentation

  • A. Barranón
  • R. Cárdenas
  • C. O. Dorso
  • J. A. López
Article

Abstract

Nuclei colliding at energies in the MeV’s break into fragments in a process that resembles a liquid-to-gas phase transition of the excited nuclear matter. If this is the case, phase changes occurring near the critical point should yield a “droplet” mass distribution of the form ≈A −T, with T (a critical exponent universal to many processes) within 2≤T≤3. This critical phenomenon, however, can be obscured by the finiteness in space of the nuclei and in time of the reaction. With this in mind, this work studies the possibility of having critical phenomena in small “static” systems (using percolation of cubic and spherical grids), and on small “dynamic” systems (using molecular dynamics simulations of nuclear collisions in two and three dimensions). This is done investigating the mass distributions produced by these models and extracting values of critical exponents. The specific conclusion is that the obtained values of T are within the range expected for critical phenomena, i.e. around 2.3, and the grand conclusion is that phase changes and critical phenomena appear to be possible in small and fast breaking systems, such as in collisions between heavy ions.

Keywords

critical phenomena heavy-ion reactions percolation multifragmentation 

PACS

24.10.Lx 25.70.Pq 25.70.Mn 65.20.+w 64.70.Fx 02.70.Ns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.D. Panagiotou et al., Phys. Rev. Lett. 52 (1984) 496.CrossRefADSGoogle Scholar
  2. 2.
    A.S. Hirsh et al., Phys. Rev. C29 (1984) 508.CrossRefADSGoogle Scholar
  3. 3.
    G.F. Bertsch and P. Siemens, Nucl. Phys. A314 (1984) 465.Google Scholar
  4. 4.
    A.L. Goodman, J.I. Kapusta and A.Z. Mekjian, Phys. Rev. C30 (1984) 851.ADSCrossRefGoogle Scholar
  5. 5.
    A.S. Hirsch et al., Phys. Rev. C29 (1984) 508.CrossRefADSGoogle Scholar
  6. 6.
    D.H.E. Gross, Phys. Rep. 279 (1997) 119.CrossRefADSGoogle Scholar
  7. 7.
    J. Kapusta, Phys. Rev. C29 (1984) 1735.CrossRefADSGoogle Scholar
  8. 8.
    J. López and P. Siemens, Nucl. Phys. A314 (1984) 465.Google Scholar
  9. 9.
    V. Serfling et al., Phys. Rev. Lett. 80 (1984) 3928.CrossRefADSGoogle Scholar
  10. 10.
    J. Pochodzalla et al., Phys. Rev. Lett. 75 (1995) 1040.CrossRefADSGoogle Scholar
  11. 11.
    M. Belkacem, V. Latora and A. Bonasera, Phys. Rev. C52 (1995) 271.CrossRefADSGoogle Scholar
  12. 12.
    M. Kleine Berkenbusch et al., Phys. Rev. Lett. 88 (2002) 022701; W. Bauer et al., Heavy Ion Phys. 15 (2001) 217.CrossRefADSGoogle Scholar
  13. 13.
    D.H. Youngblood, C.M. Rozsa, J.M. Moss, D.R. Brown and J.D. Bronson, Phys. Rev. 39 (1977) 1188.ADSGoogle Scholar
  14. 14.
    J.A. López and C.O. Dorso, Lecture Notes in Phase Transformations in Nuclear Matter, World Scientific, Singapore, 2000.MATHGoogle Scholar
  15. 15.
    L.D. Landau and E.M. Lifshitz, Statistical Physics, 3rd Ed., Part 1. Pergamon Press Ltd., New York, 1980.Google Scholar
  16. 16.
    M.E. Fisher, Critical Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course 51, ed. M.S. Green, Academic, New York, 1971, p. 1.Google Scholar
  17. 17.
    C.O. Dorso and J.A. López, Phys. Rev. C64 (2001) 027602.CrossRefADSGoogle Scholar
  18. 18.
    T. Li et al., Phys. Rev. C49 (1994) 1630.CrossRefADSGoogle Scholar
  19. 19.
    L. Phair, W. Bauer and C.K. Gelbke, Phys. Lett. B314 (1993) 271.Google Scholar
  20. 20.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London, 1992.Google Scholar
  21. 21.
    A. Barranón, A. Chernomoretz, C.O. Dorso and J.A. López, Rev. Mex. Fis. 45(S2) (1999) 110.Google Scholar
  22. 22.
    C.O. Dorso and J. Randrup, Phys. Lett. B301 (1993) 328; C.O. Dorso and J. Aichelin, Phys. Lett. B345 (1995) 197; T. Reposeur, F. Sebille, V. de la Mota and C.O. Dorso, Z. Phys. A357 (1997) 79.Google Scholar
  23. 23.
    A. Strachan and C.O. Dorso, Phys. Rev. C55 (1997) 99; ibid. C58 (1998) R632; ibid. C59 (1999) 285.MathSciNetGoogle Scholar
  24. 24.
    A. Barranón, A. Chernomoretz, C.O. Dorso and J.A. López, Rev. Mex. Fis. 45(S2) (1999) 110.Google Scholar
  25. 25.
    R.J. Lenk, T.J. Schlagel and V.R. Pandharipande, Phys. Rev. C42 (1990) 372; R. Lenk and V.R. Pandharipande, Phys. Rev. C34 (1986) 177; T.J. Schlagel and V.R. Pandharipande, Phys. Rev. C36 (1987) 162.CrossRefADSGoogle Scholar
  26. 26.
    A. Barrañón, C.O. Dorso and J.A. López, Rev. Mex. Fis. 47(S2) (2001) 93.Google Scholar

Copyright information

© Akadémiai Kiadó 2003

Authors and Affiliations

  • A. Barranón
    • 1
  • R. Cárdenas
    • 2
  • C. O. Dorso
    • 3
  • J. A. López
    • 2
  1. 1.Universidad Autónoma Metropolitana — AzcapotzaleoMéxicoMéxico
  2. 2.University of Texas at El PasoEl PasoUSA
  3. 3.Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations