Nuclear fragmentation: a paradigm for the study of phase transitions in small systems

  • J. Richert
  • J. M. Carmona
  • P. Wagner


Nuclei are finite representatives of infinite nuclear matter which is expected to undergo a phase transition similar to the macroscopic liquid-gas transition. We rely on a simple classical spin model in order to study the characterization of phase transitions whose existence can be observed in small systems. It is shown that finite systems may undergo transitions whose order is not, in specific cases, the effective order which is observed in the corresponding infinite (large) system. We show that scaling properties of order parameter fluctuation distributions related to the fragment content of the system may allow to signal the existence of a thermodynamic transition.


order of phase transition finite systems nuclear fragmentation 


05.70.Fh 25.70.Pq 75.40.Cx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.B. Migdal, Nucl. Phys. 30 (1962) 239.CrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Bohr, Nature 137 (1936) 344.CrossRefADSGoogle Scholar
  3. 3.
    C. Mahaux and H.A. Weidenműller, Ann. Rev. Nucl. Part. Sci. 29 (1979) 1.CrossRefADSGoogle Scholar
  4. 4.
    P. Kreutz et al., Nucl. Phys. A556 (1993) 672.CrossRefGoogle Scholar
  5. 5.
    J. Pochodzalla et al., Phys. Rev. Lett. 75 (1995) 1040.CrossRefADSGoogle Scholar
  6. 6.
    M. D’Agostino et al., Nucl. Phys. A650 (1999) 329.CrossRefGoogle Scholar
  7. 7.
    M. D’Agostino et al., Phys. Leu. B473 (2000) 219.ADSGoogle Scholar
  8. 8.
    B. Borderie et al., Phys. Rev. Lett. 86 (2001) 3252.CrossRefADSGoogle Scholar
  9. 9.
    J.B. Elliott et al., nucl-ex/0104013.Google Scholar
  10. 10.
    J.M. Carmona, J. Richert and A. Tarancón, Nucl Phys. A643 (1998) 115.CrossRefGoogle Scholar
  11. 11.
    J.M. Carmona, N. Michel, J. Richert and P. Wagner, Phys. Rev. C61 (2000) 37304.ADSGoogle Scholar
  12. 12.
    J.M. Carmona, J. Richert, P. Wagner, Eur. Phys. J. A 11 (2001) 87.CrossRefADSGoogle Scholar
  13. 13.
    J.R. Ray and C. Preléchoz, Phys. Rev. E53 (1996) 3402.Google Scholar
  14. 14.
    R. Botet and M. Ploszajczak, Phys. Rev. E62 (2000) 1825.ADSGoogle Scholar
  15. 15.
    R. Botet, M. Ploszajczak, A. Chbihi, B. Borderie, D. Durand and J. Frankland, Phys. Rev. Lett. 86 (2001) 3514.CrossRefADSGoogle Scholar
  16. 16.
    A. Coniglio and W. Klein, J. Phys. A13 (1980) 2775.ADSGoogle Scholar
  17. 17.
    M. Pleimling and A. Hűller, J. Stat. Phys. 104 (2001) 971.MATHCrossRefGoogle Scholar
  18. 18.
    D.H.E. Gross, Microcanonical Thermodynamics, World Scientific, 2001 and references therein; cond-mat/0004268.Google Scholar
  19. 19.
    F. Gulminelli and Ph. Chomaz, Phys. Rev. Lett. 82 (1999) 1402.CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 2002

Authors and Affiliations

  • J. Richert
    • 1
  • J. M. Carmona
    • 2
  • P. Wagner
    • 3
  1. 1.Laboratoire de Physique ThéoriqueUniversité Louis PasteurStrasbourg CedexFrance
  2. 2.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  3. 3.Institut de Recherches SubatomiquesStrasbourg Cedex 2France

Personalised recommendations