A no-go theorem for halting a universal quantum computer

  • Tien D. Kieu
  • Michael Danos


A very brief introduction to quantum computing with an emphasis on the distinction between universal quantum computers and quantum networks. We then prove that, under very general and desirable assumptions, it is not possible to check for halting a universal quantum computer without losing the quantum computation.


quantum computation 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.P. Feynman, Optics News (1985) 11.Google Scholar
  2. 2.
    P. Benioff, Phys. Rev. Lett. 48 (1982) 1581.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    P.W. Shor, e-print quant-ph/9508027.Google Scholar
  4. 4.
    A. Steane, Rep. Prog. Phys. 61 (1998) 117.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    J. Preskill, Lecture Nottes on Quantum Information and Computation, California Institute of Technology.Google Scholar
  6. 6.
    T.D. Kieu and M. Danos, e-print quant-ph/9811001.Google Scholar
  7. 7.
    M. Danos and T.D. Kieu, Int. J. Mod. Phys. E8 (1999) 257.ADSGoogle Scholar
  8. 8.
    D. Deutsch and P. Hayden, Proc. R. Soc. Lond. A456 (2000) 1759.MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    D. Deutsch, Proc. R. Soc. Lond A425 (1989) 73.MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    D. Deutsch, Proc. R. Soc. Lond. A400 (1985) 97.MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    J.M. Myers, Phys. Rev. Lett. 78 (1997) 1823.MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Y. Shi, e-print quant-ph/9805083.Google Scholar
  13. 13.
    N. Linden and S. Popescu, e-print quant-ph/9806054.Google Scholar
  14. 14.
    M. Ozawa, Phys. Rev. Lett. 80 (1998) 631: e-print quant-ph/9809038.CrossRefADSGoogle Scholar
  15. 15.
    T.D. Kieu, unpublished.Google Scholar
  16. 16.
    R.G. Cooke, Infinite Matrices and Sequence Spaces, MacMillan, London, 1950, pp. 36–37.MATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 2001

Authors and Affiliations

  • Tien D. Kieu
    • 1
  • Michael Danos
    • 2
  1. 1.CSIRO MSTSouth ClaytonAustralia
  2. 2.National Bureau of StandardsWashington, D.C.USA

Personalised recommendations