Advertisement

Acta Geodaetica et Geophysica Hungarica

, Volume 47, Issue 1, pp 13–28 | Cite as

A theory on geoid modelling by spectral combination of data from satellite gravity gradiometry, terrestrial gravity and an Earth Gravitational Model

Article

Abstract

In precise geoid modelling the combination of terrestrial gravity data and an Earth Gravitational Model (EGM) is standard. The proper combination of these data sets is of great importance, and spectral combination is one alternative utilized here. In this method data from satellite gravity gradiometry (SGG), terrestrial gravity and an EGM are combined in a least squares sense by minimizing the expected global mean square error. The spectral filtering process also allows the SGG data to be downward continued to the Earth’s surface without solving a system of equations, which is likely to be ill-conditioned. Each practical formula is presented as a combination of one or two integral formulas and the harmonic series of the EGM.

Numerical studies show that the kernels of the integral part of the geoid and gravity anomaly estimators approach zero at a spherical distance of about 5°. Also shown (by the expected root mean square errors) is the necessity to combine EGM08 with local data, such as terrestrial gravimetric data, and/or SGG data to attain the 1-cm accuracy in local geoid determination.

Keywords

downward continuation filtering kernel geoid gravity field recovery integral formulas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arabelos D, Tscherning C C 1995: J. Geophys. Res., 100, No. B11, 22009–22015.CrossRefGoogle Scholar
  2. Arabelos D, Tscherning C C 1999: Phys. Chem. Earth (A), 24, 19–25.CrossRefGoogle Scholar
  3. Bruinsma S L, Marty J C, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H 2010: GOCE Gravity Field Recovery by Means of the Direct Numerical Method. Presented at the ESA Living Planet Symposium, Bergen, NorwayGoogle Scholar
  4. ESA 1999: Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1). Report for mission selection of the four candidate earth explorer missions. ESA Publications DivisionGoogle Scholar
  5. Eshagh M 2009: On satellite gravity gradiometry. Doctoral dissertation in Geodesy, Royal Institute of Technology (KTH), Stockholm, SwedenGoogle Scholar
  6. Eshagh M 2010: Acta Geophys., 59, 29–54.CrossRefGoogle Scholar
  7. Freeden W, Michel V 2003: Multiscale Potential Theory, with applications to Geosciences. Birkhäuser Boston, USAGoogle Scholar
  8. Heiskanen W, Moritz H 1967: Physical geodesy. W H Freeman and Company, San Francisco and LondonGoogle Scholar
  9. Janak J, Fukuda Y, Xu P 2009: Earth Planets Space, 61, 835–843.Google Scholar
  10. Kotsakis C 2007: Geophys. J. Int., 171, 509–522.CrossRefGoogle Scholar
  11. Metzler B, Pail R 2005: Stud. Geophys. Geod., 49 441–462.CrossRefGoogle Scholar
  12. Migliaccio F, Reguzzoni M, Sansò F, Tscherning C C, Veicherts M 2010: GOCE data analysis: the space-wise approach and the first space-wise gravity field model. Proceedings of the ESA Living Planet Symposium, Bergen, NorwayGoogle Scholar
  13. Pail R, Goiginger H, Mayrhofer R, Schuh W D, Brockmann J M, Krasbutter I, Hoeck E, Fecher T 2010: GOCE gravity field model derived from orbit and gradiometry data applying the time-wise Method. Proceedings of the ESA Living Planet Symposium, Bergen, NorwayGoogle Scholar
  14. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W D, Hoeck E, Reguzzoni M, Brockmann J M, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning C C 2011: J. Geod., 85, 819–843.CrossRefGoogle Scholar
  15. Pavlis N, Holmes S A, Kenyon S C, Factor J K 2008: An Earth Gravitational model to degree 2160: EGM08. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, AustriaGoogle Scholar
  16. Reed G B 1973: Application of kinematical geodesy for determining the shorts wavelength component of the gravity field by satellite gradiometry. Ohio state University, Dept. of Geod. Science, Rep. No. 201, Columbus, OhioGoogle Scholar
  17. Schuh W D, Brockmann J M, Kargoll B, Krasbutter I, Pail R 2010: Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. Proceedings of the ESA Living Planet Symposium, Bergen, NorwayGoogle Scholar
  18. Sjöberg L E 1980: Gerlands Beitr. Geophys., 89, 371–377.Google Scholar
  19. Sjöberg L E 1981: An. Geophys. 37, 25–30.Google Scholar
  20. Sjöberg L E 1986: Boll. Geod. Sci. Aff. 45, 229–248.Google Scholar
  21. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F 2005: J. Geod., 79, 467–478.CrossRefGoogle Scholar
  22. Tscherning C C 1989: Ricerche Geod. Topog. Fotogr., 5, 139–146.Google Scholar
  23. Tscherning C C, Arabelos D 2011: Gravity anomaly and gradient recovery from GOCE gradient data using LSC and comparisons with known ground data. Proc. 4th International GOCE user workshop, ESA SP-696.Google Scholar
  24. Tscherning C C, Rapp R 1974: Closed covariance expressions for gravity anomalies, geoid undulations and deflections of vertical implied by anomaly degree variance models. Rep. 355, Dept. Geod. Sci. Ohio State University, Columbus, USAGoogle Scholar
  25. Tscherning C C, Forsberg R, Vermeer M 1990: Methods for regional gravity field modelling from SST and SGG data. Reports of the Finnish Geodetic Institute, No. 90, 2, HelsinkiGoogle Scholar
  26. Xu P 1992: Geophys. J. Int., 110, 321–332.CrossRefGoogle Scholar
  27. Xu P 1998: Geophys. J. Int., 135, 505–514.CrossRefGoogle Scholar
  28. Xu P 2009: Geophys. J. Int., 179, 182–200.CrossRefGoogle Scholar
  29. Wenzel H-G 1981: ZfV, 106, 102–111.Google Scholar
  30. Wenzel H-G 1982: Geoid computation by least squares spectral combination using integral kernels. Presented to Symposium 4b, IAG General Meeting, TokyoGoogle Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  1. 1.Division of Geodesy and GeoinformaticsRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Department of SurveyingIslamic Azad University, Shahr-e-Rey BranchTehranIran

Personalised recommendations