Skip to main content
Log in

Increasing the efficacy of the tests for outliers for geodetic networks

  • Published:
Acta Geodaetica et Geophysica Hungarica Aims and scope Submit manuscript

Abstract

Outliers in geodetic networks badly affect all parameters and their variances estimated by least-squares. Tests for outliers (e.g. Baarda’s and Pope’s tests) are frequently used to detect outliers in geodetic networks. To measure the ability of these tests, the mean success rate (MSR) is proposed. Studies have shown that the MSRs of these tests in geodetic networks are low due to the smearing effect of the least-squares estimation even if there is only one outlier in the data set. In this paper, a new approach, for small outliers, is presented to increase the MSRs of the tests for outliers in geodetic networks. The main idea is that if the weight of one observation is increased, the corresponding studentized or normalized residuals are increased, too. This thesis is proved. Hence, the ability of the tests to detect outliers can be increased by appropriately increasing the weight of one observation at a time and repeating this for all observations. This approach is applied to three simulated geodetic networks. We show that the MSRs of the outlier tests are improved by approximately 5% if there is one small outlier in the data set. However, the improvements in the MSRs for more than one outlier are low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri-Simkooei A R 2003: J. Surv. Eng., 129, 37–43.

    Article  Google Scholar 

  • Baarda W 1968: A testing procedure for use in geodetic Networks. Publication on Geodesy, New Series 2, No. 5., Netherlands Geodetic Commission, Delft

    Google Scholar 

  • Baselga S 2007: J. Surv. Eng., 133, 52–55.

    Article  Google Scholar 

  • Benning W 1995: zfv, 12, 606–617.

    Google Scholar 

  • Erenoglu R C, Hekimoglu S 2010: Acta Geod. Geoph. Hung., 45, 426–439.

    Article  Google Scholar 

  • Even-Tzur G 1999: zfv, 124, 128–134.

    Google Scholar 

  • Fuchs H 1982: Manuscr. Geod., 7, 151–207.

    Google Scholar 

  • Hadi A S, Siminoff J S 1993: J. American Statistical Ass., 88, 65–72.

    Google Scholar 

  • Hampel F, Ronchetti E, Rousseeuw P, Stahel W 1986: Robust statistics: the approach based on influence functions. John Wiley and Sons, New York

    Google Scholar 

  • Harvey P R 1993: Aust. J. Geod. Photogram. Surv.

  • Hekimoglu S 2005a: zfv, 3, 174–180.

    Google Scholar 

  • Hekimoglu S 2005b: AVN, 112, 7–12.

    Google Scholar 

  • Hekimoglu S 2005c: Survey Review, 38, 274–285. 59, 39–52.

    Google Scholar 

  • Hekimoglu S, Erenoglu R C 2007: J. Geodesy, 81, 137–148.

    Article  Google Scholar 

  • Hekimoglu S, Erenoglu R C 2009: J. Surv. Eng., 135, 1–5.

    Article  Google Scholar 

  • Hekimoglu S, Koch K R 1999: In: Proc. Third Turkish-German Joint Geodetic Days. M O Altan, L Gründig eds, Istanbul, 1, 179–196.

  • Hekimoglu S, Koch K R 2000: AVN, 107, 247–254.

    Google Scholar 

  • Hekimoglu S, Sanli D U 2003: zfv, 128, Heft 4, 271.

    Google Scholar 

  • Huber P J 1981: Robust statistics. John Wiley and Sons. Inc., New York

    Book  Google Scholar 

  • Koch K R 1996: AVN, 103, 1–18.

    Google Scholar 

  • Koch K R 1999: Parameter estimation and hypothesis testing in linear models. 2nd Ed. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Pelzer H 1985: Überprüfung von Ausgleichungsmodellen. Geodätische Netze in Landesund Ingenieurvermessung II. Verlag Konrad Witter, Stuttgart

    Google Scholar 

  • Pope A J 1976: The statistics of residuals and the outlier detection of outliers. NOAA Technical Report, NOS 65, NGS 1, Rockville, MD

  • Rousseeuw P J, Leroy A M 1987: Robust regression and outlier detection. John Wiley and Sons, Inc., New York.

    Book  Google Scholar 

  • Schwarz C R, Kok J J 1993: J. Surv. Eng., 119, 128–136.

    Article  Google Scholar 

  • Snow K, Schaffrin B 2003: GPS Solutions, 7, 130–139.

    Article  Google Scholar 

  • Teunissen P J G 2006: Testing theory, an introduction. 2nd edition, Delft University Press, Delft

    Google Scholar 

  • Wicki F 1999: Robuste Schätzverfahren für die Parameterschätzung in geodätischen Netzen. Institut für Geodäsie und Photogrammetrie an der ETH, Zürich, Mitt. No. 67.

    Google Scholar 

  • Wilcox R R 1997: Introduction to robust estimation and hypothesis testing, Academic Press. San Diego

    Google Scholar 

  • Xu P L 2005: J. Geodesy, 79, 146–159.

    Article  Google Scholar 

  • Yang Y, Cheng M K, Shum C K, Tapley B D 1999: J. Geodesy, 73, 345–349.

    Article  Google Scholar 

  • Yang Y, He H, Xu G 2001: J. Geodesy, 75, 109–116.

    Article  Google Scholar 

  • Yang Y, Song L, Xu T 2002: J. Geodesy, 76, 353–358.

    Article  Google Scholar 

  • Youcai H 1995: Bull. Geod., 69, 292–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hekimoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hekimoglu, S., Erdogan, B., Erenoglu, R.C. et al. Increasing the efficacy of the tests for outliers for geodetic networks. Acta Geod. Geoph. Hung 46, 291–308 (2011). https://doi.org/10.1556/AGeod.46.2011.3.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/AGeod.46.2011.3.2

Keywords

Navigation