Advertisement

Acta Geodaetica et Geophysica Hungarica

, Volume 42, Issue 2, pp 141–167 | Cite as

Hungarian national report on IAG 2003–2006

Article
  • 21 Downloads

Keywords

GNSS Gravity Anomaly Acta Geod Gravity Gradient GOCE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ádám J, Bányai L, Borza T, Busics Gy, Kenyeres A, Krauter A, Takács B eds 2004: Satellite positioning (in Hungarian). Műegyetemi Kiadó, BudapestGoogle Scholar
  2. Baker T, Bruyninx C, Francis O, Hinderer J, Ihde J, Kenyeres A, Makinen J, Rohde H, Simek J, Wilmes H 2003: Development of an European Combined Geodetic Network (ECGN). IUGG Abstract, Volume G05, 2003, Sapporo, JapanGoogle Scholar
  3. Borza T, Kenyeres A, Frey S 2004: GNSS Activities at the Satellite Geodetic Observatory, with Emphasis on the Hungarian GBAS development. Second Galileo Conference for an Enlarged Europe, Budapest, HungaryGoogle Scholar
  4. Fejes I 2003: The concept of the National EUPOS Service Centres. Presentation at the 2nd EUPOS Steering Committee Meeting, Riga, LatviaGoogle Scholar
  5. Fejes I, Milev G, Rosenthal G, Vassileva K 2004: EUPOS — planning a regional ground based GNSS infrastructure in Central Europe. Paper presented at the Second Galileo Conference for an enlarged Europe, Budapest, HungaryGoogle Scholar
  6. Grenerczy Gy 2004: The motion of Adria and its effect on the Pannonian basin. Reports on Geodesy, 2(69), 73–80.Google Scholar
  7. Grenerczy Gy, Kenyeres A 2003: Velocity fields from EPN improved time series analysis and CEGRN campaigns: comparison, combination, interpretation, IUGG Abstract Volume G05, Sapporo, JapanGoogle Scholar
  8. Grenerczy Gy, Kenyeres A 2006: Crustal deformation between Adria and the European Platform from space geodesy. In: The Adria Microplate: GPS Geodesy, Tectonics, and Hazards, N Pinter, G Grenerczy, J Weber, S Stein, D Medak eds, Springer, Dordrecht, 321–334.CrossRefGoogle Scholar
  9. Grenerczy Gy, Sella G, Stein S, Kenyeres A 2005: Tectonic Implications of the GPS Velocity Field in the Northern Adriatic Region. Geophys. Res. Lett., 32, L16311.CrossRefGoogle Scholar
  10. Horváth T 2006a: EUREF Permanent Network Resources for Real-Time GNSS Activities. Presentation at the “Streaming GNSS data via Internet” Ntrip Symposium and Workshop, Frankfurt am Main, GermanyGoogle Scholar
  11. Horváth T 2006b: ITS and Ground Based GNSS Augmentation Systems. Poster presented at “On Safe Roads in the XXI. Century, 4th Conference” 2006, Budapest, HungaryGoogle Scholar
  12. Horváth T 2006c: Routine network operation and quality/integrity indicators. Presentation at the 2nd Meeting of the EUPOS WG on System Quality, Integrity and interference Monitoring (SQII), Budapest, HungaryGoogle Scholar
  13. Ihde J, Baker T, Bruyninx C, Francis O, Amalvict M, Kenyeres A, Makinen J, Shipman S, Simek J, Wilmes H 2005: Development of a European Combined Geodetic Network (ECGN). J. Geodyn., 40, 450–460, doi:10.1016/j.jog.2005.06.008CrossRefGoogle Scholar
  14. Kenyeres A 1999: Technology Development for GPS-heighting in Hungary. In: Proceedings of the 5th International Seminar on GPS in Central Europe, Penc, Hungary. Reports on Geodesy, No. 5 (46), 89–96.Google Scholar
  15. Kenyeres A, Bruyninx C 2004: EPN coordinate Time Series Monitoring for Improved Reference Frame Maintenance. GPS Solutions, Vol. 8, No. 4, 200–209.CrossRefGoogle Scholar
  16. Kenyeres A, Bruyninx C 2006: Noise and Periodic Terms in the EPN Time Series. Paper presented at the GRF2006 Symposium, Munich (paper submitted to the proceedings)Google Scholar
  17. Kenyeres A, Borza T, Virág G 2002: The HUNREF2002 Campaign: Re-establishment of the EUREF Network in Hungary. Paper presented at the EUREF Annual Symposium, Toledo, SpainGoogle Scholar
  18. Kenyeres A, Bruyninx C, Carpentier G 2003: Consistency Analysis of the EPN Time Series for Improved Velocity Estimation. IUGG Abstract Volume G05, Sapporo, JapanGoogle Scholar
  19. Pesec P, Fejes I 2004: CERGOP-2/Environment, summary of the first year. Solicited paper, presented at the EGU 1st General Assembly G11. Nice, France. Reports on Geodesy, 2(69), 105–115.Google Scholar
  20. Rosenthal G, Fejes I 2006: EUPOS — Developing a Full Scale Accuracy Ground Based Regional GNSS Infrastructure. Presentation at the UN/Zambia/ESA Regional Workshop on the Application of Global Navigation Satellite System Technologies for Sub-Saharan Africa, Lusaka, ZambiaGoogle Scholar
  21. Szentpéteri L, Borza T, Fejes I, Frey S 2003: GNSS infrastructure in Hungary — a status report. Galileo for an Enlarged Europe. 1st Conference for EU Candidate Countries, Warsaw, PolandGoogle Scholar

References

  1. Benedek J 2004: The application of polyhedron volume element in the calculation of gravity related quantities. In: Proceedings of the 1st Workshop on International Gravity Field Research, B Meurers ed., Graz 2003, Öster. Beitr. Meteorologie und Geophys., 31, 99–106.Google Scholar
  2. Benedek J, Papp G 2006: Geophysical Inversion of On Board Satellite Gradiometer Data: A Feasibility Study in the ALPACA Region, Central Europe (accepted for publication in IAG Symp. Series, IGFS2006, Istanbul)Google Scholar
  3. Csapó G, Völgyesi L 2004a: New measurements for the determination of local vertical gradients. Reports on Geodesy, 69, No. 2, 303–308.Google Scholar
  4. Csapó G, Völgyesi L 2004b: New measurements for the determination of local vertical gradients (in Hungarian). Magyar Geofizika, 45, No. 2, 64–69.Google Scholar
  5. Dobróka M, Völgyesi L 2005a: Inversion reconstruction of gravity potential based on torsion balance measurements (in Hungarian). Geomatikai Közlemények, 8, 223–230.Google Scholar
  6. Dobróka M, Völgyesi L 2005b: Inversion reconstruction of gravity potential based on gravity gradients. A joint meeting of the IAG, IAPSO and IABO; Dynamic Planet 2005, Cairns, AustraliaGoogle Scholar
  7. Paláncz B, Völgyesi L, Zaletnyik P, Kovács L 2006: Extraction of representative learning set from measured geospatial data. In: Proceedings of the 7th International Symposium of Hungarian Researchers, Budapest, 295–305. ISBN 963715454XGoogle Scholar
  8. Papp G 2006: Simultaneous Determination of Terrain Correction and Local Average Topographic Density (accepted for publication in IAG Symp. Series, IGFS2006, Istanbul)Google Scholar
  9. Papp G, Benedek J, Nagy D 2004a: On the information equivalence of gravity field related parameters — A comparison of gravity anomalies and deflection of vertical data. In: Proceedings of the 1st Workshop on International Gravity Field Research, Graz 2003, B Meurers ed. Öster. Beitr. Meteorologie und Geophys., 31, 71–78.Google Scholar
  10. Papp G, Benedek J, Kalmár J 2004b: Gravity investigations on Dunaföldvár test area. In: Landslide monitoring of loess structures in Dunaföldvár. Gy Mentes, I Eperné P eds, Hungary, Sopron, 37–46.Google Scholar
  11. Rózsa Sz, Tóth Gy 2005: The determination of the effect of topographic masses on the second derivatives of gravity potential using various methods. IAG Symposia Vol 130, Dynamic Planet, P Tregoning, C Rizos eds, Springer, 2007, 391–396.Google Scholar
  12. Strykowski G, Boschetti F, Papp G 2005: Estimation of the mass density contrasts and the 3D geometrical shape of the source bodies in the Yilgarn area, Eastern Goldfields, Western Australia. J. Geodyn., 39, 444–460.CrossRefGoogle Scholar
  13. Tóth Gy 2005: The gradiometric-geodynamic boundary value problem. IAG Symposia Vol. 129, Gravity, Geoid and Space Missions, C Jekeli, L Bastos, J Fernandes eds, Springer, 352–357.Google Scholar
  14. Tóth Gy, Földváry L 2005: Effect of geopotential model errors on the projection of GOCE gradiometer observables. IAG Symposia Vol. 129, Gravity, Geoid and Space Missions, C Jekeli, L Bastos, J Fernandes eds, Springer, 72–76.Google Scholar
  15. Tóth Gy, Merényi L 2005: Torsion balance measurement data for gravity map improvement (in Hungarian). Geomatikai Közlemények, 8, 209–215.Google Scholar
  16. Tóth Gy, Rózsa Sz 2006: Comparison of CHAMP and GRACE geopotential models with terrestrial gravity field data in Hungary. Acta Geod. Geoph. Hung., 41, 171–180.CrossRefGoogle Scholar
  17. Tóth Gy, Völgyesi L 2005: Investigation of Hungarian torsion balance measurements by prediction. Reports on Geodesy, Warsaw University of Technology, 73(2), 277–284.Google Scholar
  18. Tóth Gy, Völgyesi L 2007: Local gravity field modeling using surface gravity gradient measurements. Dynamic Planet 2005, Cairns, Australia, P Tregoning, C Rizos eds, Springer-Verlag Berlin Heidelberg; Series: IAG Symposia, Vol. 130, 424–429.Google Scholar
  19. Tóth Gy, Völgyesi L, Cerovsky I 2004: Modelling time variation of gravity gradients due to water level fluctuations. Reports on Geodesy, Warsaw University of Technology, 69(2), 309–314.Google Scholar
  20. Tóth Gy, Földváry L, Tziavos I N, Ádám J 2006a: Upward/downward continuation of gravity gradients for precise geoid determination. Acta Geod. Geoph. Hung., 41, 21–30.CrossRefGoogle Scholar
  21. Tóth Gy, Földváry L, Tziavos I N 2006b: Practical Aspects of Upward/Downward Continuation of Gravity Gradients. In: Proceedings of the 3rd GOCE User Workshop, ESA SP–627Google Scholar
  22. Völgyesi L 2005a: Deflections of the vertical and geoid heights from gravity gradients. Acta Geod. Geoph. Hung., 40, 147–159.CrossRefGoogle Scholar
  23. Völgyesi L 2005b: Some possible physical reason of time variation of Earths gravity field (a possible proof of time change of gravitational constant). A joint meeting of the IAG, IAPSO and IABO; Dynamic Planet 2005, Cairns, AustraliaGoogle Scholar
  24. Völgyesi L 2006: Some possible physical reason of time variation of Earths gravity field (a possible proof of time change of gravitational constant). Periodica Polytechnica Civ. Eng., 50(2), 161–170.Google Scholar
  25. Völgyesi L, Tóth Gy 2004: Modelling gravity gradient variation due to water mass fluctuations. Gravity, Geoid and Space Missions GGSM 2004. IAG International Symposium Porto, Portugal, C Jekeli, L Bastos, J Fernandes eds, Springer Verlag Berlin, Heidelberg, New York; Series: IAG Symposia, Vol. 129, 364–368.Google Scholar
  26. Völgyesi L, Szabó Z, Csapó G 2004a: Relation between the geological conditions and vertical surface movements in the Pannonian basin. Gravity, Geoid and Space Missions GGSM 2004. IAG International Symposium Porto, Portugal, C Jekeli, L Bastos, J Fernandes eds, Springer Verlag Berlin, Heidelberg, New York; Series: IAG Symposia, Vol. 129, 358–363.Google Scholar
  27. Völgyesi L, Tóth Gy, Csapó G 2004b: Determination of gravity anomalies from torsion balance measurements. Gravity, Geoid and Space Missions GGSM 2004. IAG International Symposium Porto, Portugal, C Jekeli, L Bastos, J Fernandes eds, Springer Verlag Berlin, Heidelberg, New York; Series: IAG Symposia, Vol. 129, 292–297.Google Scholar
  28. Völgyesi L, Tóth Gy, Csapó G 2005a: Determination of gravity field from horizontal gradients of gravity. A joint meeting of the IAG, IAPSO and IABO; Dynamic Planet 2005, Cairns, AustraliaGoogle Scholar
  29. Völgyesi L, Csapó G, Szabó Z 2005b: Relation between time variation of gravity and pannonian sediment thickness in the Carpathian basin. Reports on Geodesy, Warsaw University of Technology, 73(2), 255–262.Google Scholar
  30. Völgyesi L, Tóth Gy, Csapó G 2007a: Determination of gravity field from horizontal gradients of gravity. Acta Geod. Geoph. Hung., 42, 107–117.CrossRefGoogle Scholar
  31. Völgyesi L, Földváry L, Csapó G 2007b: New processing of gravity network measurements in Hungary. Dynamic Planet 2005, Cairns, Australia, P Tregoning, C Rizos eds, Springer-Verlag Berlin Heidelberg; Series: IAG Symposia, Vol. 130, 202–207.Google Scholar

References

  1. Bányai L 2003: Geodynamic investigations along the Mecsek-fault in Hungary using precise geodetic devices. In: Proceedings. 11th International Symposium on Deformation Measurements. Publication No. 2. Geodesy and Geodetic Applications Lab. Dept of Civil Engineering, Patras University, 65–70.Google Scholar
  2. Bányai L 2005: Results in physical geodesy. Acta Geod. Geoph. Hung., 40, 307–316.CrossRefGoogle Scholar
  3. Bednárik M, Brimich L, Dudášová V, Gubanová G, Kohút I, Latynina L A, Mentes Gy 2003: Interpretation of the extensometric measurements at the tidal station in Vyhne. The 5th Slovak Geophysical Conference, Abstracts. Contributions to Geophysics and Geodesy, 33, 75.Google Scholar
  4. Denis C, Rybicki K R, Varga P 2006: Secular change of LOD associated with a growth of the inner core. Astronomisches Nachrichten, 327,4, 309–313.CrossRefGoogle Scholar
  5. Mentes Gy 2003a: Monitoring local geodynamical movements and deformations by borehole tiltmeters in Hungary. In: Proceedings of the 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 43–50.Google Scholar
  6. Mentes Gy 2003b: Local effects disturbing the monitoring of tectonic movements of the Mecsekalja fault by shallow deep borehole tiltmeters in Hungary. Acta Geod. Geoph. Hung., 38, 327–335.CrossRefGoogle Scholar
  7. Mentes Gy 2004a: Atmospheric tide obtained by the microbarograph developed at the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences. Acta Geod. Geoph. Hung., 39, 39–48.CrossRefGoogle Scholar
  8. Mentes Gy 2004b: Investigation of the stability of borehole tiltmeters working in unpacked boreholes inundated with ground water. Acta Geod. Geoph. Hung., 39, 49–54.CrossRefGoogle Scholar
  9. Mentes Gy 2005: Results of tidal research. Acta Geod. Geoph. Hung., 40, 293–305.CrossRefGoogle Scholar
  10. Mentes Gy 2006: Extensometric measurements in Hungary. Abstracts of the Workshop on International Gravity Field Research, Smolenice, Slovakia, CD, Geophysical Research Institute of the Slovakian Academy of Sciences, Bratislava, 69–78.Google Scholar
  11. Mentes Gy, Eper-Pápai I 2006: Investigation of meteorological effects on strain measurements at two stations in Hungary. J. Geodyn., 41, 259–267.CrossRefGoogle Scholar
  12. Mentes Gy, Berta Zs, Eper-Pápai I 2006a: Stability investigation of the new three-dimensional extensometric observatory in Bakonya, Hungary. Marées Terrestres Bulletin d’Information, Bruxelles, 141, 11253–11262.Google Scholar
  13. Mentes Gy, Eper-Pápai I, Kis M, Újvári G 2006b: New results of the extensometric measurements at Budapest observatory. Marées Terrestres Bulletin d’Information, Bruxelles, 141, 11263–11269.Google Scholar
  14. Rotár-Szalkai Á, Eper-Pápai I, Mentes Gy 2006: Well level data analysis in Hungary near a fault region. J. Geodyn., 41, 183–189.CrossRefGoogle Scholar
  15. Schreider A A, Schreider Al A, Varga P, Denis C 2005: Magnitude of geomagnetic field in the time- interval of chrons C1-M43. Okeanology, 45, 785–789.Google Scholar
  16. Schuh H, Varga P, Seitz T, Boehm J, Weber R, Mentes Gy, Závoti J, Westerhaus M 2003: Sub-semidiurnal variations of the EOP observed by space geodesy compared with other geophysical phenomena. In: Proceedings of International Earth Rotation Service, N Capitaine ed., 95–99.Google Scholar
  17. Varga P 2005: On the physical meaning of the zonal components of the geopotential. J. Geodyn., 39, 569–577.CrossRefGoogle Scholar
  18. Varga P 2006a: Temporal variation of geodynamical properties due to tidal friction. J. Geodyn., 41, 140–146.CrossRefGoogle Scholar
  19. Varga P 2006b: Volcanic activity and tidal heating of Saturn’s moon Enceladus. Marées Terrestres Bulletin d’Information, 141, 11227–11234.Google Scholar
  20. Varga P, Mentes Gy 2006: Strain data and seismicity, Marées Terrestres Bulletin d’Information, 141, 11287–11292.Google Scholar
  21. Varga P, Engels J, Grafarend E 2004a: Temporal variations of the polar moment of inertia and the second degree geopotential. J. Geodesy, 78, 187–191.CrossRefGoogle Scholar
  22. Varga P, Bus Z, Kiszely M 2004b: Strain rates, seismic activity and its temporal variations within the Pannonian basin. Reports on Geodesy, 2(69), 149–156.Google Scholar
  23. Varga P, Kiszely M, Bus Z 2004c: Study of the temporal variation in seismic activity within the Pannonian Basin. Acta Geod. Geoph. Hung., 39, 327–338.CrossRefGoogle Scholar
  24. Varga P, Bus Z, Gribovszki K 2005a: Use of geodetic informations in seismology. Reports on Geodesy, 2(73), 61–66.Google Scholar
  25. Varga P, Gambis D, Bus Z, Bizouard Ch 2005b: The relation between the global seismicity and the rotation of the Earth, Observatoire de Paris, Systémes de reference tempsespace UMR8630/CNRS, 115–121.Google Scholar
  26. Varga P, Bus Z, Gribovszki K 2005c: Use of geodetic informations in eismology. In: Proceedings of CEI Workshop “Natural Risks: Earthquakes and Co-seismic Associated Risks”, Bratislava, 184–189.Google Scholar
  27. Varga P, Rybicki K R, Denis C 2006a: Comments on fast tidal cycling and the origin of the life. ICARUS, 180, 277–280.CrossRefGoogle Scholar
  28. Varga P, Gambis D, Bizouard Ch, Bus Z, Kiszely M 2006b: Tidal influences through LOD variations on the temporal distribution of earthquake occurences. In: “Journées 2005, Systémes de Réference Spatio-Temporels, Space Research Centre Polish Academy of Sciences, 233–236.Google Scholar

References

  1. Joó I 2004a: Result and problem in the investigation of recent vertical movements in the Carpathian region (in Hungarian). Geodézia és Kartográfia, 56, No. 2, 12–19.Google Scholar
  2. Joó I 2004b: Resolving into components the vertical movements’s velocities and quotients according to geologo-geophysical acting (in Hungarian). Geodézia és Kartográfia, 56, No. 10, 16–20.Google Scholar
  3. Joó I 2006a: Possibility and problems of the Hungarian precise altitude measurements (in Hungarian). Geodézia és Kartográfia, 58, No. 1, 5–12.Google Scholar
  4. Joó I 2006b: Further contribution to the topic of Hungarian high precise levelling network (in Hungarian). Geodézia és Kartográfia, 58, No. 8, 38–40.Google Scholar
  5. Joó I 2006c: The recent vertical movements in the Carpathian Region. Crustal and lithospheric structure of the Carpathian Pannonian Region, geophysical perspective: Regional geophysical data on the Carpathian — Pannonian lithosphere; L Pospisil, and A Adam, American Association Petroleum Geologists (AAPG), AAPG Memoir 84, 651–697.Google Scholar
  6. Joó I, Balázsik V, Guszlev A, Végső F 2006: Application of the new way “Resolving into Components the Velocities and Quotients” at the Investigation on Recent Vertical Movements (in Hungarian). Geodézia és Kartoráfia, 58, No. 4, 17–23.Google Scholar
  7. Komjáti G, Joó I, Balázsik V 2004: Investigation and modelling of the recent vertical movements int he southern part of the Great Hungarian Plain (in Hungarian). Geodézia és Kartográfia, 56, No. 11, 10–17.Google Scholar
  8. Pájer T, Joó I, Balázsik V 2004: Investigation on relationship of the recent vertical movement velocities whit three geologic characteristics in the surrounding area of the rivers Middle Tisza and Körös (in Hungarian). Geodézia és Kartográfia, 56, No. 7, 3–15.Google Scholar
  9. Papp B, Joó I, Balázsik V 2005: Investigation and modelling of the recent vertical movements in the space between Danube and Tisza river (in Hungarian). Geodézia és Kartográfia, 57, No. 6, 11–18.Google Scholar

References

  1. Bányai L 2003: Stability investigations of the high bank of river Danube in the area of Dunafoldvar. In: Proceedings. 11th International Symposium on Deformation Measurements. Publication No. 2. Geodesy and Geodetic Applications Lab. Dept of Civil Engineering, Patras University, 65–70.Google Scholar
  2. Bányai L 2004: Methods and results of geodetic monitoring in Dunaföldvár. In: Landslide monitoring of loess structures in Dunaföldvár, Hungary. Gy Mentes, and I Eperné eds, Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, (ISBN 963 8381 21 3), Sopron, 47–65.Google Scholar
  3. Bányai L 2005: Investigation of GPS antenna mean phase centre offsets using a full roving observation strategy. J. Geod., 79, 222–230.CrossRefGoogle Scholar
  4. Bányai L 2006: Application of full roving GPS observation strategy for monitoring local movements. CD-ROM Proceedings of the 3rd IAG Symposium on Geodesy for Geotechnical and Structural Engineering and 12th FIG Symposium on Deformation Measurement. Baden, Austria. Vienna University of Technology. ISBN: 3-9501492-3-6Google Scholar
  5. Gyimóthy A 2004: GIS for landslide monitoring in Dunaföldvár. In: Landslide monitoring of loess structures in Dunaföldvár, Hungary. Gy Mentes, I Eperné eds, Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences (ISBN 963 8381 21 3), Sopron, 77–82.Google Scholar
  6. Mentes Gy 2004a: Features of the end users need for monitoring bridges. In: Proceedings of the 7th Samco Workshop, Laboratorio Stampa D.G. Roma, X.1–8.Google Scholar
  7. Mentes Gy 2004b: Measurement and Analysis of Cyclic Deformations and Movements of the TV Tower in Sopron. 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering. Workshop on Measurements and Analysis of Cyclic Deformations and Structural Vibrations. University of Nottingham, Nottingham, United Kingdom, CD, International Federation of Surveyors, Frederiksberg, Denmark (ISBN 87-90907-35-3), TS8.2, 1–13.Google Scholar
  8. Mentes Gy 2004c: Health Monitoring of structures Using Natural Effects as Excitation Signal. Proceedengs of the 3rd International Conference on Engineering Surveying and FIG Regional Conference for Central and Eastern Europe INGEO 2004. Bratislava, Slovakia, CD, International Federation of Surveyors, Frederiksberg, Denmark (ISBN 87-90907-34-5), TS5, 1–9.Google Scholar
  9. Mentes Gy 2004d: Landslide monitoring by borehole tiltmeters in Dunaföldvár. In: Landslide monitoring of loess structures in Dunaföldvár, Hungary. Gy Mentes, I Eperné eds, Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, (ISBN 963 8381 21 3), Sopron, 67–76.Google Scholar
  10. Mentes Gy 2004e: Summary and interpretation of the results of the landslide monitoring in Dunaföldvár. In: Landslide monitoring of loess structures in Dunaföldvár, Hungary. Gy Mentes, I Eperné eds, Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, (ISBN 963 8381 21 3), Sopron, 83–84.Google Scholar
  11. Mentes Gy 2005a: Investigation of the deformations and movements of the TV tower in Sopron influenced by weather variations and ground motions. In: Proceedings of the Third European Conference on Structural Control. R Flesch, H Irschik, M Krommer eds, Vienna, Austria, Schriftenreihe der Technischen Universität Wien, (ISBN-3-901167-90-0), Volume II, pp. S6–72–75.Google Scholar
  12. Mentes Gy 2005b: Role of Tidal Phenomenon in Measurements for Structural Control of Objects. In: Proceedings of the SAMCO Summer Academy on Structural Assessment, Monitoring and Control. CD. VCE Holding GmbH. Vienna, Austria, 1–10.Google Scholar
  13. Mentes Gy 2005c: Investigation of the Possibility of Using Tidal Signals for Health Monitoring of Objects. Acta Geod. Geoph. Hung., 40(3–4), 367–378.CrossRefGoogle Scholar
  14. Mentes Gy 2006a: Investigation of the deformation and movements of objects caused by Earth tides. In: Proceedings of the 3rd IAG Symposium on Geodesy for Geotechnical and Structural Engineering, 12th FIG Symposium on Deformation Measurement, H Kahmen, A Chrzanowski eds, Baden, Austria, CD, (ISBN: 3-9501 492-3-6), Engineering Geodesy, Vienna University of Technology, 1–10.Google Scholar
  15. Mentes Gy 2006b: Investigation of the connection between recent tectonic movements and landslides at the high loess wall on the bank of River Danube. In: Proceedings of the 3rd IAG Symposium on Geodesy for Geotechnical and Structural Engineering, 12th FIG Symposium on Deformation Measurement, H Kahmen, A Chrzanowski eds, Baden, Austria, CD (ISBN: 3-9501 492-3-6), Engineering Geodesy, Vienna University of Technology, 1–9.Google Scholar
  16. Mentes Gy, Eperné P I eds 2004: Landslide monitoring of loess structures in Dunaföldvár, Hungary. Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, (ISBN 963 8381 21 3), SopronGoogle Scholar
  17. Mentes Gy, EpernéPápai I, Szőcs É 2004: General description of the Hungarian test site in Dunaföldvár. In: Landslide monitoring of loess structures in Dunaföldvár, Hungary. Gy Mentes, I Eperné eds, Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences (ISBN 963 8381 21 3), Sopron, 7–22.Google Scholar
  18. Papp G, Benedek J, Kalmár J 2004: Gravity investigations on Dunaföldvár test area. In: Landslide monitoring of loess structures in Dunaföldvár, Hungary. Gy Mentes, I Eperné eds, Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, (ISBN 963 8381 21 3), Sopron, 37–46.Google Scholar
  19. Szeidovitz Gy, Gribovszki K 2004: Seismic hazard of Dunaföldvár. In: Landslide monitoring of loess structures in Dunaföldvár, Hungary. Gy Mentes, I Eperné eds, Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences (ISBN 963 8381 21 3), Sopron, 23–35.Google Scholar

References

  1. Battha L 2004: Relative orientation with constrains for invariant geometric elements. Acta Geod. Geoph. Hung., 39, 61–68.CrossRefGoogle Scholar
  2. Monhor D 2005: On the relevance of convolution of uniform distributions to the theory of errors. Acta Geod. Geoph. Hung., 40, 59–68.CrossRefGoogle Scholar
  3. Monhor D, Takemoto S 2005a: Understanding the concept of outlier and its relevance to the assessment of data quality: Probabilistic background theory. Earth Planets Space, 57, 1009–1018.Google Scholar
  4. Monhor D, Takemoto S 2005b: Geodetic and Astronomical Contributions to the Invention of the Normal Distribution: Some Refinements and New Evidences. J. Geod., 51, 175–185.Google Scholar
  5. Závoti J 2004: Generalization of spline interpolation for geodynamic models. Acta Geod. Geoph. Hung., 39, 477–480.CrossRefGoogle Scholar
  6. Závoti J, Jancso T 2006: The solution of the 7-parameter datum transformation problem with and without the Gröbner basis. Acta Geod. Geoph. Hung., 41, 87–100.CrossRefGoogle Scholar
  7. Závoti J, Somogyi J, J Kalmár, L Battha 2005: Research in mathematical geodesy. Acta Geod. Geoph. Hung., 40, 283–292.CrossRefGoogle Scholar

References

  1. Ádám J, Rózsa Sz 2004a: IAG on the Internet (http://www.iag-aig.org). The Geodesists’ Handbook. J. Geod., 77, 576–577.Google Scholar
  2. Ádám J, Rózsa Sz 2004b: Communication and Outreach Branch. The Geodesists’ Handbook. J. Geod., 77, 677–678.Google Scholar

Copyright information

© Akadémiai Kiadó 2007

Authors and Affiliations

  1. 1.Department of Geodesy and SurveyingBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations