Acta Geodaetica et Geophysica Hungarica

, Volume 41, Issue 2, pp 181–198 | Cite as

Review article: Analysing the crack coalescence in brittle rock materials

  • B. Vásárhelyi
Article
  • 74 Downloads

Abstract

The understanding of fracture has tended to follow great public disasters (e.g. over 200 US ships suffered due to catastrophic failure during WW II, later several jet air-craft damaged, destroying some bridges and buildings, etc). Rock fracture mechanics dates back to early 60-s and its application to rock blast problems, collapses deep gold mines in South Africa, earthquake disasters, etc. Pure shear mode (Mode I) or mixed tension and shear mode (Mode I and II) fracturing are the most important in rock mechanics and geophysics. The goal of this paper is to summarize the existing fracture criteria and the observed crack growth firstly from single flaws, secondly from multiply (two) flaws. Analysing the fracture propagations different types of coalescence can be determined and classified. Using these modelling and analysing the observed patterns, for example we could forecast the new failures after the earthquakes or calculating the stability of rock slopes, etc.

Keywords

fracture coalescence fracture mechanics rock mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams M, Sines G 1978: Tectonophys., 49, 97–118.CrossRefGoogle Scholar
  2. Awaji H, Sato S 1978: J. Eng. Mat. Techn., 100, 175–172.CrossRefGoogle Scholar
  3. Bieniawski Z T 1967: Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 4, 395–430.CrossRefGoogle Scholar
  4. Bobet A 1997: Fracture coalescence in rock materials: experimental observations and numerical predictions. PhD thesis, MITGoogle Scholar
  5. Bobet A 2000: Eng. Frac. Mech., 66, 187–219.CrossRefGoogle Scholar
  6. Bobet A 2001: Int. J. Rock. Mech. Min. Sci., 38, 1121–1134.CrossRefGoogle Scholar
  7. Bobet A, Einstein H H 1998: Int. J. Rock. Mech. Min. Sci., 35, 863–889.CrossRefGoogle Scholar
  8. Bobet A, Einstein H H 2004: Eurock2004, 475–478.Google Scholar
  9. Bowie O L, Freeze D E 1972: Eng. Frac. Mech., 4, 315–320.CrossRefGoogle Scholar
  10. Brace W, Bombolakis E 1963: J. Geophys. Res., 68, 3709–3713.CrossRefGoogle Scholar
  11. Chen G, Kemeny J, Harpalani S 1992: Fracture Propagation and Coalescence in Marble Plates with Particular Application to Rock. Symp. Fract. and Jointed Rock Mass: 443–448.Google Scholar
  12. Erdogan F, Sih G C 1963: ASME J. Basic Eng., 85, 519–527.CrossRefGoogle Scholar
  13. Griffith A A 1921: Phil. Trans. Roy. Soc., A.221, 163–198.Google Scholar
  14. Griffith A A 1924: Theory of rupture. Proc. 1st Int. Cong. Appl. Mech., Delft, 55–63.Google Scholar
  15. Hoek E, Bieniawsi Z T 1965: Int. J. Fract. Mech., 1, 137–155.Google Scholar
  16. Horii H, Nemat-Nasser S 1986: Phil. Trans. Roy. Soc. London, 319, 337–374.CrossRefGoogle Scholar
  17. Hussein M A, Pu E L, Underwood J H 1974: ASTM STP 560: 2–28.Google Scholar
  18. Ingraffea A R, Heuze F 1980: Int. J. Num. Analyt. Met. in Geomech., 4, 24–43.Google Scholar
  19. Jiefan H C, Ganglin Z, Yonghong Z, Ren W 1990: Tectonophys., 175, 269–284.CrossRefGoogle Scholar
  20. Lajtai E 1974: Int. J. Fract., 10, 525–536.CrossRefGoogle Scholar
  21. Lemaitre J 1986: Eng. Frac. Mech., 25, 523–537.CrossRefGoogle Scholar
  22. Lim I L, Johnston I W, Choi S K, Boland J N 1994: Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 31, 199–212.Google Scholar
  23. McClintock F A, Walsh P F 1962: In: Proc. 4th National Cong. Appl. Mech., 1015–1021.Google Scholar
  24. Petit J-P, Barquins M 1988: Tectonics, 7, 1243–1256.CrossRefGoogle Scholar
  25. Reyes O 1991: Experimental Study and Analytical Modelling of Compressive Fracture in Brittle Materials. Ph.D. Thesis, MIT, Cambridge, USAGoogle Scholar
  26. Reyes O, Einstein H H 1991: In: Proc. 7th Cong. ISRM, 1, 333–340.Google Scholar
  27. Richard H A 1984: Examination of brittle fracture criteria for overlapping mode I and mode II loading applied to cracks. Application of Fracture Mech. to Mat. Struc., 309–316.Google Scholar
  28. Sagong M, Bobet A 2002: Int. J. Rock Mech. Min. Sci., 39, 229–241.CrossRefGoogle Scholar
  29. Shah S P 1974: ASTM STO 560, 29–52.Google Scholar
  30. Shen B, Stephanson O 1994: Eng. Frac. Mech., 47, 177–189.CrossRefGoogle Scholar
  31. Shen B, Stephanson O, Einstein H H, Ghahreman B 1995: J. Geophys. Res., 100, 5975–5990.CrossRefGoogle Scholar
  32. Sih G C 1974: Int. J. Fract., 10, 305–321.CrossRefGoogle Scholar
  33. Sih G C, Cha B C K 1974: Eng. Fract. Mech., 6, 699–723.CrossRefGoogle Scholar
  34. Taha N, Swartz S 1989: In: Fracture of Concrete and Rocks: Recent Developments, S P Shad, S E Swartz, B Barr eds, 5–17.Google Scholar
  35. Tang C A, Lin P, Wong R H C, Chau K T 2001: Int. J. Rock. Mech. Min. Sci., 38, 925–939.CrossRefGoogle Scholar
  36. Theocaria P S, Andrianopoulus N P 1982: Eng. Fract. Mech., 16, 425–432.CrossRefGoogle Scholar
  37. Vásárhelyi B, Bobet A 2000: Rock Mech. Rock Eng. 33, 119–139.CrossRefGoogle Scholar
  38. Wang R, Zhao Y, Chen Y, Yan H, Yin Y, Yao C, Zhang H 1987: Tectonophys., 144, 141–150.CrossRefGoogle Scholar
  39. Wong R H C, Chau K T 1998: Int. J. Rock. Mech. Min. Sci., 35, 147–164.CrossRefGoogle Scholar
  40. Wu E M 1967: ASME J. Appl. Mech., 34, 967–974.CrossRefGoogle Scholar
  41. Yehia N A B 1985: Eng. Fract. Mech., 22, 189–199.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2006

Authors and Affiliations

  • B. Vásárhelyi
    • 1
  1. 1.Department of Building Mathematics and Engineering GeologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations