Advertisement

Acta Geodaetica et Geophysica Hungarica

, Volume 39, Issue 4, pp 419–425 | Cite as

Generalization of spline interpolation for geodynamic models

  • J. Závoti
Article
  • 21 Downloads

Abstract

Závoti (2002) presented the mathematical description of the interpolation method especially for modeling the orbit of artificial satellites, which is suitable for approaching only certain 9 points. The task in this form stems from Grafarend and Schaffrin’s (1993) study. During the time passed since the elaboration of the method, the generalization of the algorithm became necessary in the case when we have an arbitrary amount of measurement points, which must be approached according to a certain principle. The generalized method was successfully applied for modeling geodynamical processes, for describing the motion of the Earth’s poles and for analyzing economical time series.

Keywords

artificial satellite geodynamic model interpolation numerical method orbit determination spline method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bányai L 2000: Publications in Geomatics, 3, 71–80.Google Scholar
  2. Battha L 2001a: Acta Geod. Geoph. Hung., 36, 339–344.CrossRefGoogle Scholar
  3. Battha L 2001b: Publications in Geomatics, 4, 61–67.Google Scholar
  4. Grafarend E, Schaffrin B 1993: Ausgleichungsrechnung in linearen Modellen. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, ZürichGoogle Scholar
  5. Kalmár J 2001: Publications in Geomatics, 4, 69–82.Google Scholar
  6. Marcsuk G I 1976: Numerical methods of computer mathematic. Műszaki Könyvkiadó, BudapestGoogle Scholar
  7. Somogyi J 2001: Publications in Geomatics, 4, 155–164.Google Scholar
  8. Závoti J 1999: Publications in Geomatics, 2, 1–149.Google Scholar
  9. Závoti J 2002: Publications in Geomatics, 5, 207–214.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • J. Závoti
    • 1
  1. 1.Geodetic and Geophysical Research Institute of the Hungarian Academy of SciencesSopronHungary

Personalised recommendations