Earthquake prediction: basics, achievements, perspectives

  • V. G. Kossobokov


The recent scientific advances in understanding the hierarchical nature of the lithosphere and its dynamics based on systematic monitoring and evidence of its space-energy similarity at global, regional, and local scales did result the design of reproducible intermediate-term middle-range earthquake prediction technique. The real-time experimental testing aimed at prediction of the largest earthquakes worldwide from 1992 to the present proved statistically a possibility of practical earthquake forecasting although of limited precision. In the first approximation, an accuracy of 1–5 years and 5–10 times the anticipated source dimension is achieved. Further analysis of seismic dynamics allows reducing the spatial uncertainty down to 1–3 source dimensions, although at the cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The link of theoretical research in modeling earthquake sequences in frames of statistical physics on the one hand and instrumental and algorithm developments on the other hand help developing a new generation of earthquake prediction technique of higher accuracy.


dynamical system earthquake prediction hypotheses testing statistical significance and confidence levels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen C R, Edwards W, Hall W J, Knopoff L, Raleigh C B, Savit C H, Toksoz M N, Turner R H 1976: Predicting earthquakes: A scientific and technical evaluation — with implications for society. Panel on Earthquake Prediction of the Committee on Seismology, Assembly of Mathematical and Physical Sciences, National Research Council, U.S. National Academy of Sciences, Washington, D.C.Google Scholar
  2. Bak P, Christensen K, Danon L, Scanlon T 2002: Phys. Rev. Lett., 88, 178501–178504.CrossRefGoogle Scholar
  3. Barenblatt G I 1982: Similarity, Selfsimilarity, and Intermediate Asymptotics. Consultants Bureau, New YorkGoogle Scholar
  4. Barenblatt G 1996: Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press, CambridgeGoogle Scholar
  5. Bhatia S C, Chalam S V, Gaur V K, Keilis-Borok V I, Kossobokov V G 1989: Proc. Indian Ac. Sci.. Earth and Planetary Sciences, 98, 111–123.Google Scholar
  6. Corral A 2003:. Phys. Rev. E, 68, 035102(R).CrossRefGoogle Scholar
  7. Ellsworth W L, Beroza G C 1995: Science, 268, 851–855.CrossRefGoogle Scholar
  8. Evans E, Bhatti N, Kinney J, Pann L, Pena M, Yang S-C, Hansen J, Kalnay E 2003: RISE undergraduates find that regime changes in Lorenz’s model are predictable. (Accepted in Bull. Amer. Meteorol. Soc.)Google Scholar
  9. Frohlich C, Davis S D 1993: J. Geophys. Res., 98, 631–644.CrossRefGoogle Scholar
  10. Gabrielov A, Newman W I, Turcotte D L 1999: Phys. Rev. E, 60, 5293–5300.CrossRefGoogle Scholar
  11. Gahalaut V K, Kuznetsov I V, Kossobokov V G, Gabrielov A M, Keilis-Borok V I 1992: Proc. Indian Acad. Sci. (Earth Planet. Sci.), 101, 239–254.Google Scholar
  12. Geller R J, Jackson D D, Kagan Y Y, Mulargia F 1997: Science, 275, 1616–1619.CrossRefGoogle Scholar
  13. Global Hypocenters Data Base CD-ROM 1989: NEIC/USGS, Denver, CO. and its PDE and QED updatesGoogle Scholar
  14. Gorshkov A, Kossobokov V, Soloviev A 2003: In: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. V I Keilis-Borok, A A Soloviev eds, Springer, Heidelberg, 141–207.Google Scholar
  15. Gutenberg B, Richter C F 1954: Seismicity of the Earth. 2nd ed., Princeton University Press, Princeton, N.J.Google Scholar
  16. Harris R A 1998: Bull. Seismol. Soc. Am., 88, 898–916.Google Scholar
  17. Harte D, Li D-F, Vreede M, Vere-Jones D 2003:. New Zealand Journal of Geology, Geophysics, 46, 141–152.CrossRefGoogle Scholar
  18. Healy J H, Kossobokov V G, Dewey J W 1992: A test to evaluate the earthquake prediction algorithm, M8, U.S. Geol. Surv. Open-File Report 92–401, with 6 AppendicesGoogle Scholar
  19. Kagan Y, Jackson D 2000: Geophys. J. Int., 143, 438–453.CrossRefGoogle Scholar
  20. Kanamori H, Brodsky E H 2001: The Physics of earthquakes. Physics Today, June 2001, 34–40.Google Scholar
  21. Keilis-Borok V I 1990: Rev. Geophys., 28, 19–34.CrossRefGoogle Scholar
  22. Keilis-Borok V I, Kossobokov V G 1984: In: Proc. 27th Geological congress, 61, Moscow, Nauka, 56–66.Google Scholar
  23. Keilis-Borok V I, Kossobokov V G 1987: Periods of high probability of occurrence of the world’s strongest earthquakes, Computational Seismology 19, Allerton Press Inc., 45–53.Google Scholar
  24. Keilis-Borok V I, Kossobokov V G 1990a: J. Geophys. Res., 95, 12413–12422.CrossRefGoogle Scholar
  25. Keilis-Borok V I, Kossobokov V G 1990b: Phys. Earth Planet. Inter., 61, 73–83.CrossRefGoogle Scholar
  26. Keilis-Borok V I, Rotwain I M 1990: Phys. Earth Planet. Inter., 61, 57–72.CrossRefGoogle Scholar
  27. Keilis-Borok V I, Knopoff L, Rotwain I M, Allen C R 1988: Nature, 335, 690–694.CrossRefGoogle Scholar
  28. Keilis-Borok V I, Knopoff L, Kossobokov V G, Rotvain I M 1990: Geophys. Res. Letters, 17, 1461–1464.CrossRefGoogle Scholar
  29. Kossobokov V G 1997: In: Algorithms for earthquake statistics and prediction. J H Healy, V I Keilis-Borok, W H K Lee eds, IASPEI Software Library, Vol. 6. Seismol. Soc. Am., El Cerrito, CAGoogle Scholar
  30. Kossobokov V G 2003: In: IUGG2003, Sapporo, Japan. Abstracts, Week A, A.184.Google Scholar
  31. Kossobokov V G, Khokhlov A V 1993: An experimental intermediate-term prediction of earthquakes in real time: Verification of the M8 algorithm. Mathematical modeling of seismotectonic processes in the lithosphere oriented on the problem of earthquake prediction (in Russian), Issue 1. Moscow: MITP RAN, 53–60.Google Scholar
  32. Kossobokov V G, Mazhkenov S A 1988: Spatial characteristics of similarity for earthquake sequences: Fractality of seismicity. Lecture Notes of the Workshop on Global Geophysical Informatics with Applications to Research in Earthquake Prediction and Reduction of Seismic Risk, ICTP, TriesteGoogle Scholar
  33. Kosobokov V G, Mazhkenov S A 1994: In: Computational Seismology and Geodynamics. D K Chowdhury ed., Am. Geophys. Un., 1, Washington, D.C., The Union, 6–15.Google Scholar
  34. Kossobokov V P, Shebalin 2003: In: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. V I Keilis-Borok, A A Soloviev eds, Springer, Heidelberg, 141–207.Google Scholar
  35. Kossobokov V G, Rastogi B K, Gaur V K 1989: Proc. Indian Ac. Sci. Earth and Planetary Sciences, 98, 309–318..Google Scholar
  36. Kossobokov V G, Keilis-Borok V I, Smith S W 1990: J. Geophys. Res., 95, 19763–19772.CrossRefGoogle Scholar
  37. Kossobokov V G, Healy J H, Keilis-Borok V I, Dewey J W, Khokhlov A V 1992: Testing an intermediate-term earthquake prediction algorithm: A real-time test design and the results of retrospection (in Russian). Doklady RAN, 325,1, 46–48.Google Scholar
  38. Kossobokov V G, Keilis-Borok V I, Romashkova L L, Healy J H 1999: Phys. Earth Planet. Inter., 111, 187–196.CrossRefGoogle Scholar
  39. Kossobokov V G, Keilis-Borok V I, Cheng B 2000: Earth. Phys. Rev. E, 61, 3529–3533.CrossRefGoogle Scholar
  40. Latoussakis J, Kossobokov V G 1990: Pure Appl. Geophys., 134, 261–282.CrossRefGoogle Scholar
  41. Lay T, Wallace T C 1995: Modern global seismology. Academic Press, San DiegoGoogle Scholar
  42. Lorenz E N 1963: J. Atmos. Sci., 20, 130–141.CrossRefGoogle Scholar
  43. Molchan G M 1997: Pure Appl. Geophys., 149, 233–247.CrossRefGoogle Scholar
  44. Molchan G M 2003: In: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. V I Keilis-Borok, A A Soloviev eds, Springer, Heidelberg, 141–207.Google Scholar
  45. Nekrasova A, Kossobokov V 2002: Generalizing the Gutenberg-Richter scaling law. EOS Trans. AGU, 83(47), Fall Meet. Suppl., Abstract NG62B-0958.Google Scholar
  46. Nekrasova A, Kossobokov V 2003: Generalized Gutenberg-Richter recurrence law: Global map of parameters. Geophysical Research Abstracts, 5, 2003. Abstracts of the Contributions of the EGS-AGU-EGU Joint Assembly, Nice, France, (CD-ROM): EAE03-A-03801.Google Scholar
  47. Romachkova L L, Kossobokov V G, Panza G F, Costa G 1998: Pure and Appl. Geophys., 152, 37–55.CrossRefGoogle Scholar
  48. Romashkova L L, Kossobokov V G 2001: Seismicity dynamics prior to and after the largest earthquakes worldwide, 1985–2000. In: Problems of lithosphere dynamics and seismicity (Computational seismology, 32) (in Russian), Moscow: GEOS, 162–189.Google Scholar
  49. Scholz C H 1997: Geotimes, 42(3), 16–19.Google Scholar
  50. Shebalin P N, Keilis-Borok V I 1999: Phys. Earth Planet. Int., 111, 215–227.CrossRefGoogle Scholar
  51. Shebalin P, Zaliapin I, Keilis-Borok V 2000: Phys. Earth Planet. Int., 122, 241–249.CrossRefGoogle Scholar
  52. Shebalin P N, Keilis-Borok V I, Zaliapin I, Uyeda S, Nagao T, Tsybin N 2003: In: IUGG2003, Sapporo, Japan. Abstracts, Week A, A.184.Google Scholar
  53. Sykes L R, Shaw B E, Scholz C H 1999: Pure appl. Geophys., 155, 207–232.CrossRefGoogle Scholar
  54. Turcotte D L 1995: Fractals and Chaos in Geophysics. Cambridge Univ. Press, Cambridge, 2nd edition, U.K.Google Scholar
  55. Vorobieva I A 1999: Physics Earth Planet. Inter., 111, 197–206.CrossRefGoogle Scholar
  56. Wyss M ed. 1991: Evaluation of Proposed Earthquake Precursors. AGU, Washington, D.C.Google Scholar
  57. Wyss M 1997a: Science, 278, 487–488.CrossRefGoogle Scholar
  58. Wyss M 1997b: Pure Appl. Geophys., 149, 3–16.CrossRefGoogle Scholar
  59. Zaliapin I, Keilis-Borok V, Axen G 2002: J. Geophys. Res., 107(B10), 2221, doi: 10.1029/2000JB000034CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • V. G. Kossobokov
    • 1
    • 2
  1. 1.International Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussia
  2. 2.Russian Federation Institute de Physique du Globe de ParisParisFrance

Personalised recommendations