Skip to main content

Microreactor Flow Synthesis of the Secondary High Explosive 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105)


The secondary high explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide, or LLM-105, has been synthesized using a commercially available flow microreactor system. Investigations focused on optimizing flow nitration conditions of the cost effective 2,6-diaminopyrazine-1-oxide (DAPO) in order to test the feasibility and viability of flow nitration as a means for the continuous synthesis of LLM-105. The typical benefits of microreactor flow synthesis including safety, tight temperature control, decreased reaction time, and improved product purity all appear to be highly relevant in the synthesis of LLM-105. However, the process does not provide any gains in yield, as the typical 50–60% yields are equivalent to the batch process. A key factor in producing pure LLM-105 lies in the ability to eliminate any acid inclusions in the final crystalline material through both a controlled quench and recrystallization. The optimized flow nitration conditions, multigram scale-up results, analyses of sample purity, and quenching conditions for purity and crystal morphology are reported.


  1. Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons, Ltd.: England, 2007; p. 349.

    Google Scholar 

  2. Olah, G. A.; Prakash, G. K. S.; Wang, Q.; Li, X. Nitronium Tetrafluor-oborate. E-EROS Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd.: online, 2001.

    Google Scholar 

  3. Kockmann, N.; Roberge, D. M. Chem Eng. Technol 2009, 32, 1682–1694.

    CAS  Article  Google Scholar 

  4. Stoessel, F. Thermal Safety of Chemical Processes: Risk Assessment and Process Design; Wiley-VCH: Weinheim, 2008.

    Book  Google Scholar 

  5. Kulkarni, A. A. Beilstein J. Org. Chem. 2014, 10, 405–424.

    Article  Google Scholar 

  6. Elvira, K. S.; Casadevall i Solvas, X.; Wootton, R. C. R.; deMello, A. J. Nat. Chem. 2013, 5, 905–915.

    CAS  Article  Google Scholar 

  7. Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q. ChemSusChem 2013, 6, 746–789.

    CAS  Article  Google Scholar 

  8. Antes, J.; Boskovic, D.; Krause, H.; Loebbecke, S.; Lutz, N.; Tuercke, T.; Schweikert, W. Trans IChemE 2003, 81, 760–765.

    CAS  Article  Google Scholar 

  9. Pelleter, J.; Renaud, F. Org. Process Res. Dev. 2009, 13, 698–705.

    CAS  Article  Google Scholar 

  10. Brocklehurst, C. E.; Lehmann, H.; La Vecchia, L. Org. Process Res. Dev. 2011, 15, 1447–1453.

    CAS  Article  Google Scholar 

  11. Zaborenko, N.; Murphy, E. R.; Kralj, J. G.; Jensen, K. F. Ind. Chem. Res. 2010, 49, 4132–4139.

    CAS  Article  Google Scholar 

  12. Tran, T. D.; Pagoria, P. F.; Hoffman, M. D.; Cutting, J. G.; Lee, R. S.; Simpson, R. L. Characterization of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) as an insensitive high explosive material, in Proceedings of 33rd International Annual Conference of ICT (Energetic Materials), Karlsruhe, Germany, June 25–28, 2002.

    Google Scholar 

  13. Pagoria, P. F.; Mitchell, A. R.; Schmidt, R. D.; Simspon, R. L.; Garcia, F.; Forbes, J.; Cutting, J.; Lee, R.; Swansiger, R.; Hoffman, D. M. Synthesis, Scale-up and Experimental Testing of LLM-105 (2, 6-diamino-3, 5-dinitropyrazine 1-oxide). Insensitive Munitions & Energetic Materials Technology Symposium, San Diego, CA, 1998, I-3-1 to I-3-5.

    Google Scholar 

  14. Bright, N. F. H.; Hutchison, H.; Smith, D. J. Soc. Chem. Ind. 1946, 65, 385–388.

    CAS  Article  Google Scholar 

  15. Stroock, A. D.; Dertinger, S. K. W.; Ajdari, A.; Mezic, I.; Stone, H. A.; Whitesides, G. M. Science 2002, 295, 647–651.

    CAS  Article  Google Scholar 

  16. Lee, C.-Y.; Chang, C.-L.; Wang, Y.-N.; Fu, L.-M. Int. J. Mol. Sci. 2011, 12, 3263–3287.

    CAS  Article  Google Scholar 

  17. Pennella, F. R.; Rossi, M.; Ripandelli, S.; Rasponi, M.; Mastrangelo, F.; Deriu, M. A.; Ridolfi, L.; Kähler, C. J.; Morbiducci, U. Biomed. Microdev. 2012, 14, 849–862.

    Article  Google Scholar 

  18. Bellamy, A. J. Cent. Eur. J. Energ. Mater. 2007, 4, 33–57.

    CAS  Google Scholar 

  19. Seong, G. H.; Crooks, R. M. J. Am. Chem. Soc. 2002, 124, 13360–13361

    CAS  Article  Google Scholar 

  20. Shang, M.; Noël, T.; Wang, Q.; Su, Y.; Miyabayashi, K.; Hessel, V.; Hasebe, S. Chem. Eng. J. 2015, 260, 454–462.

    CAS  Article  Google Scholar 

  21. Pagoria, P. F.; Zhang, M.-X. Synthesis of pyrazines including 2, 6-diaminopyrazine-1-oxide (DAPO) and 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105). US 20100267955 A1, April 20, 2009.

    Google Scholar 

  22. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512–7515.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nathaniel B. Zuckerman.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuckerman, N.B., Shusteff, M., Pagoria, P.F. et al. Microreactor Flow Synthesis of the Secondary High Explosive 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105). J Flow Chem 5, 178–182 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • flow nitration
  • microreactor
  • energetic materials
  • LLM-105