Salt Tolerant Wheat Landraces and Gly II Transformed Lines Show Distinct Biochemical Mechanisms of Stress Tolerance

Abstract

The present investigation was carried out to study the distinct salt tolerance mechanism in two sets of material, Gly II transgenics and Kharchia landraces. The Gly II transgenics were developed for glyoxalase II (osglyII) gene (GenBank accession no. AY054407) from Oryza sativa through Agrobacterium mediated method in the background of wheat cultivar PBW 621. Kharchia 65 is a salt tolerant landrace derivative developed from Kharchia local which is native to saline soils of Rajasthan. The six wheat genotypes, viz. Kharchia local, Kharchia 65, PBW 621, G-2-2, G-3-4 and G-1-13 were evaluated for growth parameters, antioxidant enzymes and contents of glutathione, ascorbic acid, malondialdehyde (MDA), H2O2, sugars, chlorophyll, carotenoid, electrolyte leakage (EL) and Na+, K+ under control and two salt treatments (150 mM and 250 mM NaCl). The activities of antioxidant enzymes, glutathione, sugar content increased in both GlyII and Kharchia genotypes as compared to PBW 621. The GlyII activity increased (77–84%) in GlyII genotypes alongwith content of reduced glutathione (GSH) to maintain redox homeostasis. Apparently, GlyII and Kharchia genotypes exhibited minimum oxidative stress due to low content of MDA, H2O2, diminished EL and thereby causing less growth reduction and maintaining high chlorophyll and carotenoid level as compared to PBW 621. In addition, Gly II transgenic material and Kharchia lines showed less Na+ accumulation, greater seedling biomass and sugar content due to its salt tolerance mechanism. We infer that GlyII activity enhances GSH which play significant role in detoxifying ROS to establish stress homeostasis. The route for generation of GSH is via ascorbate-glutathione pathway mediated by glutathione reductase. Hence, GlyII transgenics and Kharchia genotypes can diminish salt stress following above mechanism.

This is a preview of subscription content, access via your institution.

Abbreviations

GlyII:

glyoxalase II

GPX:

glutathione peroxidase

GST:

glutathione s transferase

SOD:

superoxide dismutase

GR:

glutathione reductase

ROS:

reactive oxygen species

GSH:

reduced glutathione

EL:

electrolyte leakage

MDA:

malondialdehyde

MG:

methylglyoxal

References

  1. Antognelli, C., Romani, R., Baldracchini, F., De Santis, A., Andreani, G., Tasela, V. 2003. Different activity of glyoxalase system in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem. Biol. Interact. 142:297–305.

    CAS  Google Scholar 

  2. Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376.

    Google Scholar 

  3. Becana, M., Aparicio-Tejo, P., Irigoyan, J.J., Sanchez-Diaz, M. 1986. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol. 82:1169–1171.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Beutler, E., Durron, O., Kally, B.M. 1963. Improved method for determination of blood glutathione. J. Lab. Clin. Med. 61:882–888.

    CAS  Google Scholar 

  5. Das, K., Roychoudhury, A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53.

    Google Scholar 

  6. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. 1956. Colorometric method for determination of sugars and related substances. Anal. Chem. 28:350–356.

    CAS  Google Scholar 

  7. FAO. 2016. FAO Soils Portal. Available at: https://doi.org/www.fao.org/soils-portal/soilmanagement/management-of-some-problem-soils/salt-affected soils/more information-on-salt-affected-soils/en.

  8. Flowers, T.J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:307–319.

    CAS  Google Scholar 

  9. Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M. 1997. Hydrogen peroxide and glutathione-associated mechanism of acclimatory stress tolerance and signaling. Plant Physiol. 100:241–254.

    CAS  Google Scholar 

  10. Ghosh, A., Pareek, A., Sopory, S.K., Singla-Pareek, S.L. 2014. A glutathione responsive rice glyoxalase II, OsGLYII-2, function in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J. 80:93–105.

    CAS  Google Scholar 

  11. Gill, S.S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909–913.

    CAS  Google Scholar 

  12. Gorham, J., Hardy, C., Wyn Jones, R.G., Joppa, LR., Law, C.N. 1987 Chromosomal location of K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74:584–588.

    CAS  Google Scholar 

  13. Gupta, B.K., Sahoo, K.K., Ghosh, A., Tripathi, A.K., Khalid, A., Das, P., Singh, A.K., Pareek, A., Sopory, S.K., Singla-Pareek, S.L. 2018. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice Plant Cell and Environ. 41:1186–1200.

    CAS  Google Scholar 

  14. Gurmani, A.R., Khan, S.U., Mabood, F., Ahmed, Z., Butt, S.J., Din, J., Mujeeb-Kazi, A., Smith, D. 2014. Screening and selection of synthetic hexaploid wheat germplasm for salinity tolerance based on physiological and biochemical characters. Int. J. Agric. Biol. 16:681–690.

    CAS  Google Scholar 

  15. Heath, R.L., Packer, L. 1968. Photoperoxidation in isolated chloroplasts – Kinetics and stoichiometery of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189–198.

    CAS  Google Scholar 

  16. Herbette, S., Labrouhe, D.T., Drevet, J.R., Roeckel-Drevet, P. 2011. Transgenic tomatoes showing higher glutathione peroxidase antioxidant activity are more resistant to an abiotic but more susceptible to biotic stress. Plant Sci. 180:548–553.

    CAS  Google Scholar 

  17. Hoagland, D.R., Arnon, D. 1950. The water culture method for growing plants without soil. Circular 347, California Agricultural Experiment Station, University of California-Berkeley, Berkeley Ca, USA.

    Google Scholar 

  18. Hoque, M.A., Uraji, M., Banu, M.N.A., Mori, I.C., Nakamura, Y., Murata, Y. 2012. The effect of methylgly-oxal on glutathione S-trans-ferase from Nicotiana tabacum. Biosci. Biotechnol. Biochem. 74:2124–2126.

    Google Scholar 

  19. Hoque, T.S., Hossain, M.A., Mostofa, M.G., Burritt, D.J., Fujita, M., Tran Lam-Son, P. 2016. Methylglyoxal: An emerging signaling molecule in plant abiotic stress responses and tolerance. Front. Plant Sci. 7:1341.

    PubMed  PubMed Central  Google Scholar 

  20. Hussain, M.I., Shah, S., Hussain, S., Iqbal, K. 2002. Growth, yield and quality response of three wheat (Triticum aestivum L.) varieties to different levels of N, P and K. Int. J. Agric. Biol. 4(3):362–364.

    Google Scholar 

  21. Joshi, Y.C., Ali, Q., Bal, A.R., Rana, R.S. 1980. Sodium/potassium index of wheat seedlings in relation to sodicity tolerance, International symposium on salt affected soils, Feb 18–21. CSSRI. Karnal pp. 451–460.

  22. Kapoor, D. 2015. Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front. Environ. Sci. 3:13.

    Google Scholar 

  23. Kaur, R. 2014. Genetic transformation of bread wheat (Triticum aestivum L.) by ‘particle gun and Agrobacterium-mediated approaches. Ph.D. dissertatioin. Punjab Agricultural University, Ludhiana, India.

    Google Scholar 

  24. Kaya, C., Ashraf, M., Dikilitas, M., Tuna, A.L. 2013. Alleviation of salt stress induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients – a field trial. Aust. J. Crop Sci. 7:249–254.

    CAS  Google Scholar 

  25. Kumar, M., Hasan, M., Arora, A., Gaikwad, K., Kumar, S., Rai, R.D. 2015. Sodium chloride-induced spatial and temporal manifestation in membrane stability index and protein profiles of contrasting wheat (Triticum aestivum L.) genotypes under salt stress. Ind. J. Plant Physiol. 20:271–275.

    Google Scholar 

  26. Kumar, S., Beena, A.S., Awana, M., Singh, A. 2017. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front. Plant Sci. 8:1151.

    PubMed  PubMed Central  Google Scholar 

  27. Luwe, M.W.F., Takahama, U., Heber, U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol. 101:969–976.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mannervik, B., Guthenberg, C. 1981. Glutathione transferase (human placenta). Methods Enzymol. 77:231–235.

    CAS  Google Scholar 

  29. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33:453–467.

    CAS  Google Scholar 

  30. Moller, I.S., Gilliham, M., Jha, D., Mayo, G.M., Roy, S.J., Coates, J.C. 2009. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178.

    PubMed  PubMed Central  Google Scholar 

  31. Munns, R., James, R.A., Islam, S., Colmer, T.D. 2011. Hordeum marinum–wheat amphiploids maintain higher leaf K:Na and suffer less leaf injury than wheat parents in saline conditions. Plant Soil 348:365–377.

    CAS  Google Scholar 

  32. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y.I., Neukermans, J., Marquez-Garcia, B. 2012. Glutathione in plants: an integrated overview. Plant Cell Environ. 35:454–484.

    CAS  Google Scholar 

  33. Noreen, Z., Ashraf, M. 2009. Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environ. Exp. Bot. 67(2):395–402.

    CAS  Google Scholar 

  34. Oyiga, B.C., Sharma, R.C., Shen, R.C., Baum, M., Ogbonnaya, F.C., Leon, J., Ballvora, A. 2016. Identification and characterization of salt tolerance of wheat germplasm using multivariable screening approach. J. Agron. Crop Sci. 202(6):472–485.

    CAS  Google Scholar 

  35. Passaia, G., Spagnolo, F.L., Caverzan, A., Jardim-Messeder, D., Christoff, A.P., Gaeta, M.L., de Araujo Mariath, J.E., Margis, R., Margis-Pinheiro, M. 2013. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci. 208:93–101.

    CAS  Google Scholar 

  36. Rahaie, M., Xue, G.P., Schenk, P.M. 2013. The role of transcription factors in wheat under different abiotic stresses. In: Vahdati, K. and Leslie, C. (eds) Abiotic Stress. Plant Responses and Applications in Agriculture. In Tech, Rijeka, Croatia, pp. 367–385.

    Google Scholar 

  37. Sairam, R.K., Rao, K.V., Srivastava, G.C. 2002. Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolytes concentration. Plant Sci. 163:1037–1046.

    CAS  Google Scholar 

  38. Shaedle, M., Bassham, J.A. 1977. Chloroplast glutathione reductase. Plant Physiol. 59:1011–1012.

    Google Scholar 

  39. Sharma, P., Dubey, R.S. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46:209–221.

    CAS  Google Scholar 

  40. Singh, V., Singh, A.P., Bhadoria, J., Giri, J., Singh, J., Vineeth, T.V., Sharma, P.C. 2018. Differential expression of salt-responsive genes to salinity stress in salt tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma 255:1665–1681.

    Google Scholar 

  41. Singh, J., Singh, V., Sharma, P.C. 2018. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum) genotypes. Physiol. Mol. Bio. Plants 24(3):441–453.

    CAS  Google Scholar 

  42. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K. 2008. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res. 17:171–180.

    CAS  Google Scholar 

  43. Valentine, W.N., Paglia, D.E. 1987. Studies on the quantitative and qualities characterization of glutathione peroxidase. J. Laboratory Clin. Med. 70:158–165.

    Google Scholar 

  44. Valentovic, P., Luxova, M., Kolarovic, L., Gasparikova, O. 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars.Plant Soil Environ. 52(4):186–191.

    Google Scholar 

  45. Wani, S.H., Gosal, S.S. 2011. Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol. Plant. 55:536–540.

    CAS  Google Scholar 

  46. Wellburn, A.R. 1994. The spectral determination of chlorophylls a and b as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144:307–313.

    CAS  Google Scholar 

  47. Xie, J., Dai, Y., Mu, H., De, Y., Chen, H., Wu, Z., Ren, W. 2016. Physiological and biochemical responses to NACl salinity stress in three Roegneria (Poaceae) species. Pakistan J. Bot. 48(6):2215–2222.

    CAS  Google Scholar 

  48. Yeo, A.R., Flowers, T.J. 1983. Varietal differences in the toxicity of sodium ions in rice leaves. Physiol. Plant. 59:189–195.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Asthir.

Additional information

Communicated by S. Gottwald

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, L., Asthir, B. & Bains, N.S. Salt Tolerant Wheat Landraces and Gly II Transformed Lines Show Distinct Biochemical Mechanisms of Stress Tolerance. CEREAL RESEARCH COMMUNICATIONS 47, 264–276 (2019). https://doi.org/10.1556/0806.47.2019.11

Download citation

Keywords

  • antioxidants
  • GlyII transgenics
  • glyoxalase pathway
  • wheat
  • salt treatments