Inheritance Pattern of Genes for Morpho-physiological and Yield Traits in Wheat (Triticum aestivum L.)


In order to study the inheritance pattern of morpho-physiological traits in bread wheat, a 10×10 diallel cross, excluding reciprocals was made and grown in a randomized complete block design (RCBD) with three replications. Observations were recorded on Days to 75% flowering (DF), Days to maturity (DM), Duration of reproductive phase (DRP), Plant height (cm) (PH), Effective tiller/plant (TLS), No. of spikelets per spike (SLS), No. of grains per spike (GS), Grain weight per spike (g) (GW), Spike length (cm) (SL), Biological yield per plant (g) (BY), Harvest index (%) (HI), 1000-Grain weight (g) (TGW), Spike density (SD), Canopy temperature depression (°C) (CTD), Chlorophyll intensity (%) (CI), Chlorophyll fluorescence (Fv/Fm) (CF), Protein content (%) (PC), Grain yield per plant (g) (GY). Highly significant differences were observed among the genotypes for all traits. The resulted 45 F1s and their F2s used for study the nature of gene for grain yield and its contributing traits in bread wheat. The result indicated that considerable gene action and average degree of dominance respond to achieving significant result for grain yield and its component traits. In both the generations F1s and F2s, grain yield per plant (g) was governed by non-additive gene action based on combining ability analysis, (σ2 g/σ2 s)0.5 [GCA and SCA variance ratio] and (H1/D)0.5 [Degree of dominance] were exhibited over dominance type average degree of dominance for grain yield and its component traits in both generations. Genetic analyses of the traits confirm the involvement of both additive and non-additive gene effects in governing the inheritance.

This is a preview of subscription content, access via your institution.


  1. Ahmad, F., Khan, S., Ahmad, S.Q., Khan, H., Khan, A., Muhammad, F. 2011. Genetic analysis of some quantitative traits in bread wheat across environments. Afr. J. Agric. Res. 6(3):686–692.

    Google Scholar 

  2. Ahmad, I., Mahmood, N., Khaliq, I., Khan, N. 2016. Genetic analysis for five important morphological attributes in wheat (Triticum aestivum L.). J. Anim. P. 26(3):725–730.

    Google Scholar 

  3. Ajmal, S., Khaliq, I., Rehman, A. 2011. Genetic analysis for yield and some yield traits in bread wheat (Triticum aestivum L.). J. Agric. Res. 49:447–454.

    Google Scholar 

  4. Desai, S.A., Lohithaswa, H.C., Hanchinal, R.R., Patie, B.N., Kalappanavar, I.K., Math, K.K. 2005. Combining ability for quantitative traits in bread wheat (Triticum aestivum L.). Indian J. Genet. 65:311–312.

    Google Scholar 

  5. El-Maghraby, M.A., Moussa, M.E., Hana, N.S., Agrama, H.A. 2005. Combining ability under drought stress relative to SSR diversity in common wheat. Euphytica 141:301–308.

    CAS  Article  Google Scholar 

  6. Golparvar, A.R., Islam, M.H., Darvish, F., Abdolmajid, R., Abdollah, G.P. 2004. Genetic assessment of some morpho-physiological traits in bread wheat under drought conditions. Agron. Hort. 62:90–95.

    Google Scholar 

  7. Gurmani, R.R., Khan, S.J., Khan, Z.A.S.R., Shakeel, A., Ullah, M. 2007. Genetic evaluation of some yield and yield related traits in wheat. Pakistan J. Agric. Sci. 44:6–11.

    Google Scholar 

  8. Hayman, B.I. 1954. The theory and analysis of diallel crosses. Genetics 39:789–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Iqbal, M., Navabi, A., Salmon, D.F., Yang, R.C., Murdoch, B.M., Moore, S.S., Spaner, D. 2007. Genetic analysis of flowering and maturity time in high latitude spring wheat. Euphytica 154:207–218.

    CAS  Article  Google Scholar 

  10. Jinks, J.L. 1955. A survey of the genetical basis of heterosis in variety of diallel crosses. Heredity 9:223–238.

    Article  Google Scholar 

  11. Khan, M.Q., Alm, K. Choudhary, M.A. 1992. Diallel cross analysis of some morphological traits in spring wheat. Pakistan J. Agric. Sci. 37:328–339.

    Google Scholar 

  12. Nayeem, K.A. 1994. Genetic architecture of flowering and maturity in wheat (Triticum aestivum L.). Indian J. Genet. 54(1):63–66.

    Google Scholar 

  13. Prodanovic, S. 1993. Genetic values of F1 wheat hybrids obtained in diallel crosses. Review of Research work at the faculty of Agriculture, Belgrade 38(2):25–27.

    Google Scholar 

  14. Rizza, F., Pagani, D., Stanca, A.M., Cattivelli, L. 2001. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. S. Afr. J. Bot. 120:389–396.

    Google Scholar 

  15. Sharma, S.K., Singh, K.P., Singh, I. 1991. Selection response for grain weight in some intermated populations of wheat (Triticum aestivum L.). Proc. Golden Jubilee Symposium: Indian Soc. Genet. Plant Breed. New Delhi, Abstr. II: pp. 357.

  16. Singh, G., Bhullar, G.S., Gill, K.S. 1988. Inheritance of yield and its components in an intervarietal cross of bread wheat. Crop Improv. 15:200–202.

    Google Scholar 

  17. Singh, M., Srivastava, J.P., Kumar, A. 1990. Effect of water on water potential components in wheat genotypes. Indian J. Plant Physiol. 33:312–317.

    Google Scholar 

  18. Singh, M.K., Sharma, P.K., Tyagi, B.S., Singh, G. 2014. Combining ability analysis for yield and protein content in bread wheat (Triticum aestivum L.). Indian J. Agric. Sci. 84(3):328–336.

    CAS  Google Scholar 

  19. Singh, P., Narayanan, S.S. 1993. Biometrical techniques in plant breeding. First Edn. Kalayani publishers, New Delhi, India.

    Google Scholar 

  20. Singh, S.P., Singh, R.K., Singh, J., Agarwal, R.K. 1990. Combining ability for yield and some of its important components in induced mutants of bread wheat. Indian J. Genet. 50:167–170.

    Google Scholar 

  21. Ullah, S., Khan, A.S., Raza, A., Sadique, S. 2010. Gene action analysis of yield and yield related traits in spring wheat (Triticum aestivum). Int. J. Agric. Biol. 12:125–128.

    Google Scholar 

  22. Vanpariya, L.G., Chovatia, V.P., Mehta, D.R. 2006. Combining ability studies in bread wheat (Triticum aestivum L.). National J. Pl. Improv. 8(2):132–137.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Kumar.

Additional information

Communicated by T. Harangozó

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Kumar, A., Kumar, M. et al. Inheritance Pattern of Genes for Morpho-physiological and Yield Traits in Wheat (Triticum aestivum L.). CEREAL RESEARCH COMMUNICATIONS 47, 191–204 (2019).

Download citation


  • wheat (Triticum aestivum L.)
  • gene action
  • inheritance pattern