Skip to main content
Log in

Multi-environment Analysis of Grain Quality Traits in Recombinant Inbred Lines of a Biparental Cross in Bread Wheat (Triticum aestivum L.)

  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

A set of 286 recombinant inbred lines (RILs) along with the parents and a popular wheat variety in India were grown for two consecutive years at three locations belonging to the two major wheat growing zones of India and evaluated for four grain quality traits. Rare recombinants with high trait value appeared for protein content (PC), thousand-kernel weight (TKW), sedimentation value (SV), and kernel hardness (KH). The magnitude of environmental effects was more pronounced than genotypic effects and genotype-environment interaction (GEI). The cumulative contribution of environment and GEI components to the total variance was highest in the expression of PC followed by TKW, SV, and KH. The top five percent (14 RILs) of genotypes with high trait value were subjected to Eberhart and Russell (1966) (ER), genotype and genotype-environment (GGE) and additive main effects and multiplicative interaction (AMMI) stability models. Five RILs were identified as stable in all the three stability models. RIL61 with 38.8%, RIL101 with 8.9%, RIL226 with 26.1% superiority over check variety were the most stable genotypes in all the three stability models for PC, TKW and KH, respectively. RIL113 was found to be stable genotype in ER and GGE models, whereas, RIL231 was the most stable genotype in AMMI and GGE models in the expression of SV. These common stable genotypes with high trait value identified through ER, AMMI and GGE models could be potential donors in active breeding programs to develop high yielding wheat varieties with improved PC, TKW, SV and KH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, R.W. 1997. Genetic basis of the evolution of adaptedness in plants. In: Tigerstedt, P.M.A. (ed.) Adaptation in Plant Breeding. Developments in Plant Breeding, vol 4. Springer, Dordrecht. pp. 1–11.

    Google Scholar 

  • Aucamp, A., Labuschagne, M.T., Van Deventer, C.S. 2006. Stability analysis of kernel and milling characteristics in winter and facultative wheat. S. Afr. J. Plant Soil 23(3):152–156.

    Article  Google Scholar 

  • Axford, D.W.E., McDermott, E.E., Redman, D.G. 1979. Note on the sodium dodecyl sulfate test of bread making quality: Comparison with pelshenke and zeleny tests. Cereal Chemi. 56:582–584.

    CAS  Google Scholar 

  • Campbell, K.G., Bergman, C.J., Gualberto, D.G., Anderson, J.A., Giroux, M.J., Hareland, G., Fulcher, R.G., Sorells, M.E., Finney, P.L. 1999. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci. 39:1184–1195.

    Article  CAS  Google Scholar 

  • Castillo, D., Matus, I., Pozo, A.D., Madariaga, R., Mellado, M. 2012. Adaptability and genotype × environment interaction of spring wheat cultivars in Chile using regression analysis, AMMI, And SREG. Chilean J. Agr. Res. 72(2):167–174.

    Article  Google Scholar 

  • Eberhart, S.A., Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36–40.

    Article  Google Scholar 

  • Hatfield, J.L., Walthall, C.L. 2015. Meeting global food needs: realizing the potential via genetics × environment × management interactions. Agron. J. 107(4):1215–1226.

    Article  Google Scholar 

  • Hernandez-Espinos, N., Mondal, S., Autrique, E., Gonzalez-Santoyo, H., Crossa, J., Huerta-Espino, J., Singh, R.P., Guzman, C. 2018. Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Res. 215:104–112.

    Article  Google Scholar 

  • Khazratkulova, S., Sharma, R.C., Amanov, A., Ziyadullaev, Z., Amanovi, O., Alikulov, S., Ziyaev, Z., Muzafarova, D. 2015. Genotype × environment interaction and stability of grain yield and selected quality traits in winter wheat in Central Asia. Turk J. Agric. For. 39:920–929.

    Article  CAS  Google Scholar 

  • Kumar, A., Elias, M., Elias., Ghavami, F., Xu, X., Jain, S., Frank, A., Manthey, Mergoum, M., Mohammed, S., Alamri, Penny, M.A., Kianian, Shahryar, F., Kianian. 2013. A major QTL for gluten strength in durum wheat (Triticum turgidum L. var. durum). J. Cereal Sci. 57:21–29.

    Article  CAS  Google Scholar 

  • Mikulikova, D., Masar, S., Horvathova, V., Kraic, J. 2009. Stability of quality traits in winter wheat cultivars. Czech J. Food Sci. 27(6):403–417.

    Article  CAS  Google Scholar 

  • Muller, O., Krawinkel, M. 2005. Malnutrition and health in developing countries. CMAJ 3(3):279–286.

    Article  Google Scholar 

  • Mut, Z., Aydin, N., Bayramoglu, H.O., Ozcan, H. 2010. Stability of some quality traits in bread wheat (Triticum aestivum) genotypes. J. Env. Biol. 31:489–495.

    Google Scholar 

  • Peterson, C.J., Johnson, V.A., Mattern, P.J. 1986. Influence of cultivar and environment on mineral and protein concentrations of wheat flour, bran and grain. Cereal Chem. 63:118–186.

    Google Scholar 

  • Rajaram, S., Van Ginkel, M., Fischer, R.A. 1993. CIMMYT’s wheat breeding mega-environments (ME). In: Proc. of the 8th Int. Wheat Genetics Symp. Beijing. 20–25 July. Institute of Genetics, Chinese Academy of Sciences, Beijing, pp. 1101–1106.

  • Reza, D., Reza, M., Bihamta., Najafian, G., Ebrahimi, A. 2013. Kernel quality association and path analysis in bread wheat. Int. J. Biol. 5(3):73–79.

    Google Scholar 

  • Rozbicki, J., Ceglinska, A., Gozdowski, D., Jakubczak, M., Cacak-Pietrzak, G., Madry, W., Golba, J., Piechocinski, M., Sobczynski, G., Studnicki, M., Drzazga, T. 2015. Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. J. Cereal Sci. 61:126–132.

    Article  Google Scholar 

  • Saleem, N., Ahmad, M., Wani, S.A., Vashnavi, R., Dar, Z.A. 2015. Genotype-environment interaction and stability analysis in Wheat (Triticum aestivum L.) for protein and gluten contents. Sci. Res. Essays 10(7):260–265.

    Article  CAS  Google Scholar 

  • Studnicki, M., Wijata, M., Sobczynski, G., Samborski, S., Gozdowski, D., Rozbicki, J. 2016. Effect of genotype, environment and crop management on yield and quality traits in spring wheat. J. Cereal Sci. 72:30–37.

    Article  Google Scholar 

  • Sun, X., Liu, T., Ning, T., Liu, K., Duan, X., Wang, X., Wang, Q., An, Y., Guan, X., Tian, J., Chen, J. 2018. Genetic dissection of wheat kernel hardness using conditional QTL mapping of kernel size and protein-related traits. Plant Mol. Biol. Rep. 36:1–12.

    Article  Google Scholar 

  • Surma, M., Adamski, T., Banaszak, Z., Kaczmarek, Z., Kuczynska, A., Majcher, M., Ługowska, B., Obuchowski, W., Salmanowicz, B., Krystkowiak, K. 2012. Effect of genotype, environment and their interaction on quality parameters of wheat breeding lines of diverse grain hardness. Plant Prod. Sci. 15(3):192–203.

    Article  Google Scholar 

  • Tiwari, C., Wallwork. H., Arun, B., Mishra, V.K., Velu, G., Stangoulis, J., Uttam, K., Hugh, W., Joshi, A.K. 2016. Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207:563–570.

    Article  CAS  Google Scholar 

  • Williams, R.M., O’Brien, L., Eagles, H.A., Solah, V.A., Jayasena, V. 2008. The influences of genotype, environment, and genotype × environment interaction on wheat quality. Aust. J. Agric. Res. 59:95–111.

    Article  Google Scholar 

  • Yong, Z., Zhonghu, H., Ye, G., Aimin, Z., Ginkel, M.V. 2004. Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China. Euphytica 139:75–83.

    Article  Google Scholar 

  • Zecevic, V., Boskovic, J., Knezevic, D., Micanovic, D., Milenkovic, S. 2013. Influence of cultivar and growing season on quality properties of winter wheat (Triticum aestivum L.). African J. Agri. Res. 8(21):2545–2550.

    Google Scholar 

  • Zhang, H., Chen, J., Li, R., Deng, Z., Zhang, K., Liu, B., Tian, J. 2016. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). Crop J. 4(3):220–228.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Singh.

Additional information

Communicated by M. Taylor

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnappa, G., Ahlawat, A.K., Shukla, R.B. et al. Multi-environment Analysis of Grain Quality Traits in Recombinant Inbred Lines of a Biparental Cross in Bread Wheat (Triticum aestivum L.). CEREAL RESEARCH COMMUNICATIONS 47, 334–344 (2019). https://doi.org/10.1556/0806.47.2019.02

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/0806.47.2019.02

Keywords

Navigation