Skip to main content
Log in

Salt Stress Induces Genotype-specific DNA Hypomethylation in ZmEXPB2 and ZmXET1 Genes in Maize

  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Maize, a moderately salt sensitive crop, first experiences osmotic stress that cause reduction in plant growth under salt stress. Fluctuation in cell wall elongation is one of the reasons of this reduction. Along with others, two important proteins expansins and xyloglucan endotransglucosylase are involved in regulation of cell wall elasticity, but the role of epigenetic mechanisms in regulating the cell wall related genes is still elusive. The present study was conducted with the aim of understanding the role of DNA methylation in regulating ZmEXPB2 and ZmXET1 genes. One salt sensitive and one salt tolerant maize cultivar was grown under hydroponic conditions at different levels of salt stress: T1 = 1 mM (control), T2 = 100 mM and T3 = 200 mM in three replicates. DNA and RNA were extracted from roots. After bisulfite treatment, Methyl Sensitive PCR was used for the DNA methylation analysis. It was revealed that fragment in promoter of ZmEXPB2 gene showed high level of DNA methylation under T1 in both varieties. Comparison of different stress treatments revealed decrease in DNA methylation with the increase in salt stress, significantly lower methylation appearing in T3. Similarly, the fragment in promoter of ZmXET1 gene also showed high levels of DNA methylation in T1. When different treatments were analysed, this gene significantly hypomethylated at T2 which continued to decrease in T3 in sensitive variety but remain stable in tolerant variety. Although, further in-depth analysis is required, our results demonstrate region-specific and genotype-specific methylation shift in the promoter of the ZmEXPB2 and ZmXET1 genes when subjected to the salt stress confirming the epigenetic regulation of these genes under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baek, D., Jiang, J., Chung, J.-S., Wang, B., Chen, J., Xin, Z., Shi, H. 2011. Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol. 52:149–161.

    Article  CAS  Google Scholar 

  • Bjornson, M., Dandekar, A., Dehesh, K. 2016. Determinants of timing and amplitude in the plant general stress response. J. Integr. Plant Biol. 58:119–126.

    Article  Google Scholar 

  • Cedar, H., Bergman, Y. 2009. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10:295–304.

    Article  CAS  Google Scholar 

  • Chinnusamy, V., Jagendorf, A., Zhu, J.-K. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45:437–448.

    Article  CAS  Google Scholar 

  • Cho, H.-T., Cosgrove, D.J. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 97:9783–9788.

    Article  CAS  Google Scholar 

  • Choi, C.-S., Sano, H. 2007. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genomics. 277:589–600.

    Article  CAS  Google Scholar 

  • Choi, D., Lee, Y., Cho, H.-T., Kende, H. 2003. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398.

    Article  CAS  Google Scholar 

  • Cosgrove, D.J. 2000. Loosening of plant cell walls by expansins. Nature 407:321–326.

    Article  CAS  Google Scholar 

  • Cosgrove, D.J., Li, L.C., Cho, H.-T., Hoffmann-Benning, S., Moore, R.C., Blecker, D. 2002. The growing world of expansins. Plant Cell Physiol. 43:1436–1444.

    Article  CAS  Google Scholar 

  • de Azevedo Neto, A.D., Prisco, J.T., Enéas-Filho, J., Abreu, C.E.B. de, Gomes-Filho, E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56:87–94.

    Article  Google Scholar 

  • El Sayed, H.E.S.A. 2011. Influence of salinity stress on growth parameters, photosynthetic activity and cytological studies of Zea mays, L. plant using hydrogel polymer. Agric. Biol. J. N. Am. 2:907–920.

    Article  CAS  Google Scholar 

  • Fei, Y., Xue, Y., Du, P., Yang, S., Deng, X. 2017. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L). Protoplasma 254:987–996.

    Article  CAS  Google Scholar 

  • Fortmeier, R., Schubert, S. 1995. Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant Cell Environ. 18:1041–1047.

    Article  CAS  Google Scholar 

  • Galvan-Ampudia, C.S., Julkowska, M.M., Darwish, E., Gandullo, J., Korver, R.A., Brunoud, G., Haring, M.A., Munnik, T., Vernoux, T., Testerink, C. 2013. Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23:2044–2050.

    Article  CAS  Google Scholar 

  • Geilfus, C.-M., Ober, D., Eichacker, L.A., Mühling, K.H., Zörb, C. 2015. Down-regulation of ZmEXPB6 (Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L. J. Biol. Chem. 290:11235–11245.

    Article  CAS  Google Scholar 

  • Geilfus, C.-M., Zörb, C., Neuhaus, C., Hansen, T., Lüthen, H., Mühling, K.H. 2011. Differential transcript expression of wall-loosening candidates in leaves of maize cultivars differing in salt resistance. J. Plant Growth Regul. 30:387–395.

    Article  CAS  Google Scholar 

  • González, R.M., Ricardi, M.M., Iusem, N.D. 2013. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 8:864–872.

    Article  CAS  Google Scholar 

  • Khan, A.R., Enjalbert, J., Marsollier, A.-C., Rousselet, A., Goldringer, I., Vitte, C. 2013. Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol. 13:209.

    Article  Google Scholar 

  • Kosová, K., Prášil, I.T., Vítámvás, P. 2013. Protein contribution to plant salinity response and tolerance acquisition. Int. J. Mol. Sci. 14:6757–6789.

    Article  Google Scholar 

  • Kumar, S., Beena, A.S., Awana, M., Singh, A. 2017. Salt-induced tissue-specific cytosine methylation down-regulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA Cell Biol. 36:283–294.

    Article  CAS  Google Scholar 

  • Lee, D.-K., Ahn, J.H., Song, S.-K., Choi, Y.D., Lee, J.S. 2003. Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol. 131:985–997.

    Article  CAS  Google Scholar 

  • Li, H., Yan, S., Zhao, L., Tan, J., Zhang, Q., Gao, F., Wang, P., Hou, H., Li, L. 2014. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol. 14:105.

    Article  Google Scholar 

  • Liu, T., Van Staden, J., Cress, W.A. 2000. Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max L.) roots. Plant Growth Regul. 30:49–54.

    Article  CAS  Google Scholar 

  • Menezes-Benavente, L., Kernodle, S.P., Margis-Pinheiro, M., Scandalios, J.G. 2004. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Rep. 9:29–36.

    Article  CAS  Google Scholar 

  • Paszkowski, J., Whitham, S.A. 2001. Gene silencing and DNA methylation processes. Curr. Opin. Plant Biol. 4:123–129.

    Article  CAS  Google Scholar 

  • Paul, A., Dasgupta, P., Roy, D., Chaudhuri, S. 2017. Comparative analysis of histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. Plant Mol. Biol. 95:63–88

    Article  CAS  Google Scholar 

  • Pecinka, A., Dinh, H.Q., Baubec, T., Rosa, M., Lettner, N., Mittelsten Scheid, O. 2010. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell. 22:3118–3129.

    Article  CAS  Google Scholar 

  • Pitann, B., Kranz, T., Mühling, K.H. 2009/a. The apoplastic pH and its significance in adaptation to salinity in maize (Zea mays L.): Comparison of fluorescence microscopy and pH-sensitive microelectrodes. Plant Sci. 176:497–504.

    Article  CAS  Google Scholar 

  • Pitann, B., Schubert, S., Mühling, K.H. 2009/b. Decline in leaf growth under salt stress is due to an inhibition of H+-pumping activity and increase in apoplastic pH of maize leaves. J. Plant Nutr. Soil Sci. 172:535–543.

    Article  CAS  Google Scholar 

  • Shahzad, M., Witzel, K., Zörb, C., Mühling, K.H. 2012. Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. J. Agron. Crop Sci. 198:46–56.

    Article  CAS  Google Scholar 

  • Song, Y., Ji, D., Li, S., Wang, P., Li, Q., Xiang, F. 2012. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLOS One. 7:e41274.

    Article  CAS  Google Scholar 

  • SüMER, A., Zörb, C., Yan, F., Schubert, S. 2004. Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. J. Appl. Bot. 78:135–139.

    Google Scholar 

  • Szalai, G., Janda, T. 2009. Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J. Agron. Crop Sci. 195:165–171.

    Article  CAS  Google Scholar 

  • Takeda, T., Fry, S.C. 2004. Control of xyloglucan endotransglucosylase activity by salts and anionic polymers. Planta 219:722–732.

    Article  CAS  Google Scholar 

  • Vincent, D., Ergül, A., Bohlman, M.C., Tattersall, E.A.R., Tillett, R.L., Wheatley, M.D., Woolsey, R., Quilici, D.R., Joets, J., Schlauch, K., Schooley, D.A., Cushman, J.C., Cramer, G.R. 2007. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J. Exp. Bot. 58:1873–1892.

    Article  CAS  Google Scholar 

  • Wu, Y., Jeong, B.-R., Fry, S.C., Boyer, J.S. 2005. Change in XET activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential. Planta 220:593–601.

    Article  CAS  Google Scholar 

  • Xu, R., Wang, Y., Zheng, H., Lu, W., Wu, C., Huang, J., Yan, K., Yang, G., Zheng, C. 2015. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J. Exp. Bot. 66:5997–6008.

    Article  CAS  Google Scholar 

  • Zörb, C., Mühling, K.H., Kutschera, U., Geilfus, C.-M. 2015. Salinity stiffens the epidermal cell walls of saltstressed maize leaves: Is the epidermis growth-restricting? PLOS One. 10:e0118406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Khan.

Additional information

Communicated by M. Molnár-Láng

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleem, F., Shahzad, M., Shabir, G. et al. Salt Stress Induces Genotype-specific DNA Hypomethylation in ZmEXPB2 and ZmXET1 Genes in Maize. CEREAL RESEARCH COMMUNICATIONS 47, 216–227 (2019). https://doi.org/10.1556/0806.46.2018.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/0806.46.2018.70

Keywords

Navigation