Progress in Tetraploid Wheat Breeding through the Use of Synthetic Hexaploid Amphiploids

Abstract

Four amphiploid lines (SHW) based on T. monococcum (Tm) and T. boeoticum (Tb) were crossed to T. durum varieties to generate 13 combinations. Field germination and winter survival of hybrid plants in F2 were assessed. Among all crosses, those with SHW8A-Tb and SHW9A-Tm showed highest field germination but with different degrees of spike fragility. The variation on seed number and weight per main spike was studied in F4–6 from SHW8A-Tb/Progres and SHW5A-Tb/Severina crosses after individual selection for these traits. Ten lines with durum phenotype from the former and three genotypes with dicoccum plant shape from the latter cross were developed. SDS-PAGE indicated the presence of HMW-GS 1Ax2*+1Aynull subunits in four lines, among which 1Ax2* was inherited from T. boeoticum acc.110 through SHW8A-Tb. Most of the selected genotypes possessed γ-gliadin45, which was relating to good end-use quality. Powdery mildew testing showed that all progenies resulted from the SHW8A-Tb/Progres were susceptible to 12 races of the pathogen, while three lines derived from the SHW5A-Tb/Severina cross behaved differently: G32 expressed resistance to six, G33 to 2, and G34 to 5 races. The selected genotypes from crosses involving SHW with T. boeoticum exhibited good breeding performance compared to tetraploid wheat parents, and might be of breeding interest to further research.

This is a preview of subscription content, access via your institution.

Abbreviations

SHW:

synthetic hexaploid wheat

HMW-GS:

high-molecular-weight glutenin subunits

Bgt:

Blumeria graminis f. s. tritici

PM:

powdery mildew

References

  1. Ahmed, S., Bux, H., Rasheed, A., Kazi, A.G., Rauf, A., Mahmood, T., Mujeeb-Kazi, A. 2013. Stripe rust resistance in Triticum durum-T. monococcum and T. durum-T. urartu amphiploids. Austr. Plant Pathol. 43:109–113.

    Google Scholar 

  2. Ahmed, S., Bux, H., Kazi, A.G., Channa, A.W., Qureshi, S.T., Soomro, A.A., Sial, M.A., Rauf, A., Mujeeb-Kazi, A. 2014. Molecular diversity in some A-genome wheat amphiploids (2n = 6x = 42; BBAAAA). Pak. J. Biotech. 11:111–121.

    Google Scholar 

  3. Alvarez, J., Caballero, L., Nadal, S., Ramírez, M., Martín, A. 2009. Development and gluten strength evaluation of introgression lines of Triticum urartu in durum wheat. Cereal Res. Commun. 37:243–248.

    CAS  Google Scholar 

  4. Chhuneja, P., Kumar, K., Stirnweis, D., Hurni, S., Keller, B., Dhaliwal, H.S., Singh, K. 2012. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor. Appl. Genet. 124:1051–1058.

    CAS  PubMed  Google Scholar 

  5. Colmer, T.D., Flowers, T.J., Munns, R. 2006. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57:1059–1078.

    CAS  PubMed  Google Scholar 

  6. Cuesta, S., Alvarez, J.B., Guzmán, C. 2017. Identification and molecular characterization of novel LMW-m and -s glutenin genes, and a chimeric -m/-i glutenin gene in 1A chromosome of three diploid Triticum species. J. Cereal Sci. 74:46–55.

    CAS  Google Scholar 

  7. Dai, S., Zhao, L., Xue, X., Jia, Y., Liu, D., Pu, Z., Zheng, Y., Yan, Z. 2015. Analysis of high-molecular-weight glutenin subunits in five amphiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genet. Res. -Charact. Utiliz. 13:186–189.

    CAS  Google Scholar 

  8. Daskalova, N., Doneva, S., Spetsov, P. 2016. Chromosome variation and HMW glutenins in synthetic hexaploid wheats (Triticum turgidum ssp. dicoccum/Aegilops tauschii). Cereal Res. Commun. 44:453–460.

    CAS  Google Scholar 

  9. De Santis, M.A., Giuliani, M.M., Giuzio, L., De Vita, P., Lovegrove, A., Shewry, P.R., Flagella, Z. 2017. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 87:19–29.

    PubMed  PubMed Central  Google Scholar 

  10. Dhaliwal, H.S., Garg, M., Singh, H., Chhuneja, P., Kaur, H. 2002. Transfer of HMW-glutenin subunits from wild wheats into Triticum durum and improvement of quality. Cereal Res. Commun. 30:173–180.

    Google Scholar 

  11. Elkot, A.F.A., Chhuneja, P., Kaur, S., Saluja, M., Keller, B., Singh, K. 2015. Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L). PLoS ONE 10(6):e0128297.

    PubMed  PubMed Central  Google Scholar 

  12. Goncharov, N.P. 2011. Genus Triticum L. taxonomy: the present and the future. Plant Syst. Evol. 295:1–11.

    Google Scholar 

  13. Gorham, J. 1990. Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41:623–627.

    CAS  Google Scholar 

  14. Halford, N.G., Forde, J., Shewry, P.R., Kreis, M. 1989. Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci. 62:207–216.

    CAS  Google Scholar 

  15. He, D., Li, H., Xu, S., Duan, X., Zhou, Y., Li, L. 2007. Reaction to powdery mildew and stripe rust in related species and landraces of wheat. Genet. Res. Crop Ev. 54:213–219.

    Google Scholar 

  16. Hu, X.G., Wu, B.H., Yan, Z.H., Liu, D.C., Wei, Y.M., Zheng, Y.L. 2010. Characterization of a novel 1Ay gene and its expression protein in Triticum urartu. Agric. Sci. China 9:1543–1552.

    CAS  Google Scholar 

  17. Hu, X.G., Wu, B.H., Bi, Z.G., Liu, D.C., Zhang, L.Q., Yan, Z.H., Wei, Y.M., Zheng, Y.L. 2012. Allelic variation and distribution of HMW glutenin subunit 1Ay in Triticum species. Genet. Res. Crop Ev. 59:491–497.

    CAS  Google Scholar 

  18. Khan, K., McDonald, E., Banasik, O.J. 1983. Polyacrylamide gel electrophoresis of gliadin proteins for wheat variety. Identification-procedural modifications and observations. Cereal Chem. 60:178–181.

    CAS  Google Scholar 

  19. Khoshro, H., Bihamta, M., Hassanii, M., Omidi, M., Aghaei, M. 2010. Length polymorphism at the Glu-A3 and Glu-D3 in wild relatives of wheat. Cereal Res. Commun. 38(3):375–385.

    CAS  Google Scholar 

  20. Konopatskaia, I., Vavilova, V., Blinov, A., Goncharov, N.P. 2016. Spike morphology genes in wheat species (Triticum L.). Proc. Latvian Acad. Sci. Section B, Vol. 70:345–355.

    Google Scholar 

  21. Lafiandra, D., D’Ovidio, R., Porceddu, E., Margiotta, B., Colaprico, G. 1993. New data supporting high Mr glutenin subunits as the determinant of quality differences among the pairs 5+10 vs. 2+12. J. Cereal Sci. 18:197–205.

    CAS  Google Scholar 

  22. Lage, J., Skovmand, B., Anderson, S.B. 2003. Characterization of greenbug (Homoptera: Aphididae) resistance in synthetic hexaploid wheats. J. Econ. Entom. 90:1922–1928.

    Google Scholar 

  23. Lage, J., Skovmand, B., Anderson, S.B. 2004. Field evaluation of emmer wheat-derived synthetic hexaploid wheat for resistance to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entom. 97:1065–1070.

    CAS  PubMed  Google Scholar 

  24. Lage, J., Skovmand, B., Peña, R.J., Anderson, S.B. 2006. Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet. Res. Crop Ev. 53:955–962.

    Google Scholar 

  25. Li, H.Y., Li, Z. L., Zeng, X.X., Zhao, L.B., Chen, G., Kou, C.L., Ning, S.Z., Yuan, Z.W., Zheng,Y.L., Liu, D.C., Zhang, L.Q. 2016. Molecular characterization of different Triticum monococcum ssp. monococcum Glu-A1mx alleles. Cereal Res. Commun. 44:444–452.

    CAS  Google Scholar 

  26. Liu, H., Sultan, M.A.R.F., Liu, X.I., Zhang, J., Yu, F., Zhao, H.X. 2015. Physiological and comparative prot-eomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). PLoS ONE 10(4):e0121852.

    PubMed  PubMed Central  Google Scholar 

  27. Lutz, J., Limpert, E., Bartoš, P., Zeller, F.J. 1992. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I. Czechoslovakian cultivars. Plant Breed. 108:33–39.

    Google Scholar 

  28. Mac Key, J. 2005. Wheat: its concept, evolution and taxonomy, In: Durum wheat breeding: Current approaches and future strategies (eds. C. Royo et al.). Haworth Press, Inc, NY, USA vol. 1, pp. 3–61.

    Google Scholar 

  29. Metakovsky, E.V. 1991. Gliadin allele identification in common wheat. II. Catalogue of gliadin alleles in common wheat. J. Genet. Breed. 45:325–344.

    Google Scholar 

  30. Mujeeb-Kazi, A., Kazi, A.G., Dundas, I., Rasheed, A., Ogbonnaya, F., Chen, P., Kishi, M., Bonnett, D., Wang, R.R.-C., Xu, S., Bux, H., Mahmood, T., Farrakh, S. 2013. Genetic diversity for wheat improvement as a conduit for food security. Adv. Agron. 122:179–259.

    CAS  Google Scholar 

  31. Mujeeb-Kazi, A., Ali, N., Ibrahim, A., Napar, A.A., Jamil, M., Hussain, S., Mahmood, Z., Delgado, R., Rosas, V., Cortes, A., Rajaram, S. 2017. Tissue culture mediated allelic diversification and genomic enrichment of wheat to combat production constraints and address food security. Plant Tiss. Cult. Biotech. 27:89–140.

    Google Scholar 

  32. Olson, E.L., Brown-Guedira, G., Marshall, D., Stack, E., Bowden, R.L., Jin, Y., Rouse, M., Pumphrey, M.O. 2010. Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci. 50:1823–1830.

    CAS  Google Scholar 

  33. Payne, P.I., Lawrence, G.J. 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunit in hexaploid wheat. Cereal Res. Commun. 11:29–35.

    Google Scholar 

  34. Radchenko, E.E. 2011. Resistance of Triticum species to cereal aphids. Czech J. Genet. Plant Breed. 47 (Special issue): S67–S70.

    Google Scholar 

  35. Rafique, K., Rasheed, W., Gul, A., Mujeeb-Kazi, A. 2012. Powdery mildew resistance in some new wheat amphiploids (2n = 6x = 42) derived from A- and S-genome diploid progenitors. Plant Genet. Res. – Charact. Utiliz. 10:165–170.

    CAS  Google Scholar 

  36. Ribeiro, M., Bancel, E., Faye, A., Dardevet, M., Ravel, C., Branlard, G., Igrejas, G. 2013. Proteogenomic characterization of novel x-type high molecular weight glutenin subunit 1Ax1.1. Int. J. Mol. Sci. 14: 5650–5667.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rogers, W.J., Miller, T.E., Payne, P.I., Seekings, J.A., Sayers, E.J., Holt, L.M., Law, C.N. 1997. Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss. ssp. thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica 93:19–29.

    CAS  Google Scholar 

  38. Silva, F.A.S., Azevedo, C.A.V. 2016. The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 11:3733–3740.

    Google Scholar 

  39. Singh, N.K., Shepherd, K.W., Cornish, G.B. 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 14:203–208.

    Google Scholar 

  40. Sood, S., Kuraparthy, V., Bai, G., Gill, B.S. 2009. The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploidy wheats, trace their origin to independent mutations at non-orthologous loci. Theor. Appl. Genet. 119:341–351.

    PubMed  Google Scholar 

  41. Spetsov, P., Plamenov, D., Kiryakova, V. 2006. Distribution and characterization of Aegilops and Triticum species from the Bulgarian Black Sea coast. Centr. Eur. J. Biol. 1:399–411.

    Google Scholar 

  42. Suman, S., Mahal, G.S., Harjit, S. 2004. Effect of transfer of high molecular weight glutenin subunits encoded at Glu-A1 locus of wild Triticum species in Triticum durum. Ind. J. Genet. Plant Breed. 64:28–30.

    Google Scholar 

  43. Trethowan, R.M., Mujeeb-Kazi, A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 48:1255–1265.

    Google Scholar 

  44. Valkoun, J.J. 2001. Wheat pre-breeding using wild progenitors. Euphytica 119:17–23.

    Google Scholar 

  45. van Ginkel, M., Ogbonnaya, F. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res. 104:86–94.

    Google Scholar 

  46. Varzakas, T., Kozub, N., Xynias, I.N. 2014. Quality determination of wheat: genetic determination, biochemical markers, seed storage proteins – bread and durum wheat germplasm. J. Sci. Food Agric. 94:2819–2829.

    CAS  PubMed  Google Scholar 

  47. Villareal, R.L., Sayre, K., Banuelos, O., Mujeeb-Kazi, A. 2001. Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Sci. 41:274–274.

    Google Scholar 

  48. Zaharieva, M., Ayana, N.G., Al Hakimi, A., Misra, S.C., Monneveux, P. 2010. Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genet. Res. Crop Ev. 57:937–962.

    Google Scholar 

  49. Zaharieva, M., Monneveux, P. 2014. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genet. Res. Crop Ev. 61:677–706.

    CAS  Google Scholar 

  50. Zaim, M., Hassouni, K.E., Gamba, F., Filali-Maltouf, A., Belkadi, B., Sourour, A., Amri, A., Nachit, M., Taghouti, M., Bassi, F.M. 2017. Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability, and industrial quality across Mediterranean sites. Field Crops Res. 214:219–227.

    Google Scholar 

  51. Zhang, Y., Luo, G., Liu, D., Wang, D., Yang, W., Sun, J., Zhang, A., Zhan, K. 2015. Genome-, transcriptome-and proteome-wide analyses of the gliadin gene families in Triticum urartu. PLoS ONE 10(7):e0131559.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Spetsov.

Additional information

Communicated by P.S. Baenziger

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daskalova, N., Doneva, S., Stanoeva, Y. et al. Progress in Tetraploid Wheat Breeding through the Use of Synthetic Hexaploid Amphiploids. CEREAL RESEARCH COMMUNICATIONS 47, 157–169 (2019). https://doi.org/10.1556/0806.46.2018.063

Download citation

Keywords

  • Triticum species
  • synthetic amphiploids
  • recombinants
  • seed storage proteins
  • powdery mildew resistance