Skip to main content
Log in

Progress in Tetraploid Wheat Breeding through the Use of Synthetic Hexaploid Amphiploids

  • Breeding
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Four amphiploid lines (SHW) based on T. monococcum (Tm) and T. boeoticum (Tb) were crossed to T. durum varieties to generate 13 combinations. Field germination and winter survival of hybrid plants in F2 were assessed. Among all crosses, those with SHW8A-Tb and SHW9A-Tm showed highest field germination but with different degrees of spike fragility. The variation on seed number and weight per main spike was studied in F4–6 from SHW8A-Tb/Progres and SHW5A-Tb/Severina crosses after individual selection for these traits. Ten lines with durum phenotype from the former and three genotypes with dicoccum plant shape from the latter cross were developed. SDS-PAGE indicated the presence of HMW-GS 1Ax2*+1Aynull subunits in four lines, among which 1Ax2* was inherited from T. boeoticum acc.110 through SHW8A-Tb. Most of the selected genotypes possessed γ-gliadin45, which was relating to good end-use quality. Powdery mildew testing showed that all progenies resulted from the SHW8A-Tb/Progres were susceptible to 12 races of the pathogen, while three lines derived from the SHW5A-Tb/Severina cross behaved differently: G32 expressed resistance to six, G33 to 2, and G34 to 5 races. The selected genotypes from crosses involving SHW with T. boeoticum exhibited good breeding performance compared to tetraploid wheat parents, and might be of breeding interest to further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SHW:

synthetic hexaploid wheat

HMW-GS:

high-molecular-weight glutenin subunits

Bgt:

Blumeria graminis f. s. tritici

PM:

powdery mildew

References

  • Ahmed, S., Bux, H., Rasheed, A., Kazi, A.G., Rauf, A., Mahmood, T., Mujeeb-Kazi, A. 2013. Stripe rust resistance in Triticum durum-T. monococcum and T. durum-T. urartu amphiploids. Austr. Plant Pathol. 43:109–113.

    Google Scholar 

  • Ahmed, S., Bux, H., Kazi, A.G., Channa, A.W., Qureshi, S.T., Soomro, A.A., Sial, M.A., Rauf, A., Mujeeb-Kazi, A. 2014. Molecular diversity in some A-genome wheat amphiploids (2n = 6x = 42; BBAAAA). Pak. J. Biotech. 11:111–121.

    Google Scholar 

  • Alvarez, J., Caballero, L., Nadal, S., Ramírez, M., Martín, A. 2009. Development and gluten strength evaluation of introgression lines of Triticum urartu in durum wheat. Cereal Res. Commun. 37:243–248.

    CAS  Google Scholar 

  • Chhuneja, P., Kumar, K., Stirnweis, D., Hurni, S., Keller, B., Dhaliwal, H.S., Singh, K. 2012. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor. Appl. Genet. 124:1051–1058.

    CAS  PubMed  Google Scholar 

  • Colmer, T.D., Flowers, T.J., Munns, R. 2006. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57:1059–1078.

    CAS  PubMed  Google Scholar 

  • Cuesta, S., Alvarez, J.B., Guzmán, C. 2017. Identification and molecular characterization of novel LMW-m and -s glutenin genes, and a chimeric -m/-i glutenin gene in 1A chromosome of three diploid Triticum species. J. Cereal Sci. 74:46–55.

    CAS  Google Scholar 

  • Dai, S., Zhao, L., Xue, X., Jia, Y., Liu, D., Pu, Z., Zheng, Y., Yan, Z. 2015. Analysis of high-molecular-weight glutenin subunits in five amphiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genet. Res. -Charact. Utiliz. 13:186–189.

    CAS  Google Scholar 

  • Daskalova, N., Doneva, S., Spetsov, P. 2016. Chromosome variation and HMW glutenins in synthetic hexaploid wheats (Triticum turgidum ssp. dicoccum/Aegilops tauschii). Cereal Res. Commun. 44:453–460.

    CAS  Google Scholar 

  • De Santis, M.A., Giuliani, M.M., Giuzio, L., De Vita, P., Lovegrove, A., Shewry, P.R., Flagella, Z. 2017. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 87:19–29.

    PubMed  PubMed Central  Google Scholar 

  • Dhaliwal, H.S., Garg, M., Singh, H., Chhuneja, P., Kaur, H. 2002. Transfer of HMW-glutenin subunits from wild wheats into Triticum durum and improvement of quality. Cereal Res. Commun. 30:173–180.

    Google Scholar 

  • Elkot, A.F.A., Chhuneja, P., Kaur, S., Saluja, M., Keller, B., Singh, K. 2015. Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L). PLoS ONE 10(6):e0128297.

    PubMed  PubMed Central  Google Scholar 

  • Goncharov, N.P. 2011. Genus Triticum L. taxonomy: the present and the future. Plant Syst. Evol. 295:1–11.

    Google Scholar 

  • Gorham, J. 1990. Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41:623–627.

    CAS  Google Scholar 

  • Halford, N.G., Forde, J., Shewry, P.R., Kreis, M. 1989. Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci. 62:207–216.

    CAS  Google Scholar 

  • He, D., Li, H., Xu, S., Duan, X., Zhou, Y., Li, L. 2007. Reaction to powdery mildew and stripe rust in related species and landraces of wheat. Genet. Res. Crop Ev. 54:213–219.

    Google Scholar 

  • Hu, X.G., Wu, B.H., Yan, Z.H., Liu, D.C., Wei, Y.M., Zheng, Y.L. 2010. Characterization of a novel 1Ay gene and its expression protein in Triticum urartu. Agric. Sci. China 9:1543–1552.

    CAS  Google Scholar 

  • Hu, X.G., Wu, B.H., Bi, Z.G., Liu, D.C., Zhang, L.Q., Yan, Z.H., Wei, Y.M., Zheng, Y.L. 2012. Allelic variation and distribution of HMW glutenin subunit 1Ay in Triticum species. Genet. Res. Crop Ev. 59:491–497.

    CAS  Google Scholar 

  • Khan, K., McDonald, E., Banasik, O.J. 1983. Polyacrylamide gel electrophoresis of gliadin proteins for wheat variety. Identification-procedural modifications and observations. Cereal Chem. 60:178–181.

    CAS  Google Scholar 

  • Khoshro, H., Bihamta, M., Hassanii, M., Omidi, M., Aghaei, M. 2010. Length polymorphism at the Glu-A3 and Glu-D3 in wild relatives of wheat. Cereal Res. Commun. 38(3):375–385.

    CAS  Google Scholar 

  • Konopatskaia, I., Vavilova, V., Blinov, A., Goncharov, N.P. 2016. Spike morphology genes in wheat species (Triticum L.). Proc. Latvian Acad. Sci. Section B, Vol. 70:345–355.

    Google Scholar 

  • Lafiandra, D., D’Ovidio, R., Porceddu, E., Margiotta, B., Colaprico, G. 1993. New data supporting high Mr glutenin subunits as the determinant of quality differences among the pairs 5+10 vs. 2+12. J. Cereal Sci. 18:197–205.

    CAS  Google Scholar 

  • Lage, J., Skovmand, B., Anderson, S.B. 2003. Characterization of greenbug (Homoptera: Aphididae) resistance in synthetic hexaploid wheats. J. Econ. Entom. 90:1922–1928.

    Google Scholar 

  • Lage, J., Skovmand, B., Anderson, S.B. 2004. Field evaluation of emmer wheat-derived synthetic hexaploid wheat for resistance to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entom. 97:1065–1070.

    CAS  PubMed  Google Scholar 

  • Lage, J., Skovmand, B., Peña, R.J., Anderson, S.B. 2006. Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet. Res. Crop Ev. 53:955–962.

    Google Scholar 

  • Li, H.Y., Li, Z. L., Zeng, X.X., Zhao, L.B., Chen, G., Kou, C.L., Ning, S.Z., Yuan, Z.W., Zheng,Y.L., Liu, D.C., Zhang, L.Q. 2016. Molecular characterization of different Triticum monococcum ssp. monococcum Glu-A1mx alleles. Cereal Res. Commun. 44:444–452.

    CAS  Google Scholar 

  • Liu, H., Sultan, M.A.R.F., Liu, X.I., Zhang, J., Yu, F., Zhao, H.X. 2015. Physiological and comparative prot-eomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). PLoS ONE 10(4):e0121852.

    PubMed  PubMed Central  Google Scholar 

  • Lutz, J., Limpert, E., Bartoš, P., Zeller, F.J. 1992. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I. Czechoslovakian cultivars. Plant Breed. 108:33–39.

    Google Scholar 

  • Mac Key, J. 2005. Wheat: its concept, evolution and taxonomy, In: Durum wheat breeding: Current approaches and future strategies (eds. C. Royo et al.). Haworth Press, Inc, NY, USA vol. 1, pp. 3–61.

    Google Scholar 

  • Metakovsky, E.V. 1991. Gliadin allele identification in common wheat. II. Catalogue of gliadin alleles in common wheat. J. Genet. Breed. 45:325–344.

    Google Scholar 

  • Mujeeb-Kazi, A., Kazi, A.G., Dundas, I., Rasheed, A., Ogbonnaya, F., Chen, P., Kishi, M., Bonnett, D., Wang, R.R.-C., Xu, S., Bux, H., Mahmood, T., Farrakh, S. 2013. Genetic diversity for wheat improvement as a conduit for food security. Adv. Agron. 122:179–259.

    CAS  Google Scholar 

  • Mujeeb-Kazi, A., Ali, N., Ibrahim, A., Napar, A.A., Jamil, M., Hussain, S., Mahmood, Z., Delgado, R., Rosas, V., Cortes, A., Rajaram, S. 2017. Tissue culture mediated allelic diversification and genomic enrichment of wheat to combat production constraints and address food security. Plant Tiss. Cult. Biotech. 27:89–140.

    Google Scholar 

  • Olson, E.L., Brown-Guedira, G., Marshall, D., Stack, E., Bowden, R.L., Jin, Y., Rouse, M., Pumphrey, M.O. 2010. Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci. 50:1823–1830.

    CAS  Google Scholar 

  • Payne, P.I., Lawrence, G.J. 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunit in hexaploid wheat. Cereal Res. Commun. 11:29–35.

    Google Scholar 

  • Radchenko, E.E. 2011. Resistance of Triticum species to cereal aphids. Czech J. Genet. Plant Breed. 47 (Special issue): S67–S70.

    Google Scholar 

  • Rafique, K., Rasheed, W., Gul, A., Mujeeb-Kazi, A. 2012. Powdery mildew resistance in some new wheat amphiploids (2n = 6x = 42) derived from A- and S-genome diploid progenitors. Plant Genet. Res. – Charact. Utiliz. 10:165–170.

    CAS  Google Scholar 

  • Ribeiro, M., Bancel, E., Faye, A., Dardevet, M., Ravel, C., Branlard, G., Igrejas, G. 2013. Proteogenomic characterization of novel x-type high molecular weight glutenin subunit 1Ax1.1. Int. J. Mol. Sci. 14: 5650–5667.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, W.J., Miller, T.E., Payne, P.I., Seekings, J.A., Sayers, E.J., Holt, L.M., Law, C.N. 1997. Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss. ssp. thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica 93:19–29.

    CAS  Google Scholar 

  • Silva, F.A.S., Azevedo, C.A.V. 2016. The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 11:3733–3740.

    Google Scholar 

  • Singh, N.K., Shepherd, K.W., Cornish, G.B. 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 14:203–208.

    Google Scholar 

  • Sood, S., Kuraparthy, V., Bai, G., Gill, B.S. 2009. The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploidy wheats, trace their origin to independent mutations at non-orthologous loci. Theor. Appl. Genet. 119:341–351.

    PubMed  Google Scholar 

  • Spetsov, P., Plamenov, D., Kiryakova, V. 2006. Distribution and characterization of Aegilops and Triticum species from the Bulgarian Black Sea coast. Centr. Eur. J. Biol. 1:399–411.

    Google Scholar 

  • Suman, S., Mahal, G.S., Harjit, S. 2004. Effect of transfer of high molecular weight glutenin subunits encoded at Glu-A1 locus of wild Triticum species in Triticum durum. Ind. J. Genet. Plant Breed. 64:28–30.

    Google Scholar 

  • Trethowan, R.M., Mujeeb-Kazi, A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 48:1255–1265.

    Google Scholar 

  • Valkoun, J.J. 2001. Wheat pre-breeding using wild progenitors. Euphytica 119:17–23.

    Google Scholar 

  • van Ginkel, M., Ogbonnaya, F. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res. 104:86–94.

    Google Scholar 

  • Varzakas, T., Kozub, N., Xynias, I.N. 2014. Quality determination of wheat: genetic determination, biochemical markers, seed storage proteins – bread and durum wheat germplasm. J. Sci. Food Agric. 94:2819–2829.

    CAS  PubMed  Google Scholar 

  • Villareal, R.L., Sayre, K., Banuelos, O., Mujeeb-Kazi, A. 2001. Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Sci. 41:274–274.

    Google Scholar 

  • Zaharieva, M., Ayana, N.G., Al Hakimi, A., Misra, S.C., Monneveux, P. 2010. Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genet. Res. Crop Ev. 57:937–962.

    Google Scholar 

  • Zaharieva, M., Monneveux, P. 2014. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genet. Res. Crop Ev. 61:677–706.

    CAS  Google Scholar 

  • Zaim, M., Hassouni, K.E., Gamba, F., Filali-Maltouf, A., Belkadi, B., Sourour, A., Amri, A., Nachit, M., Taghouti, M., Bassi, F.M. 2017. Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability, and industrial quality across Mediterranean sites. Field Crops Res. 214:219–227.

    Google Scholar 

  • Zhang, Y., Luo, G., Liu, D., Wang, D., Yang, W., Sun, J., Zhang, A., Zhan, K. 2015. Genome-, transcriptome-and proteome-wide analyses of the gliadin gene families in Triticum urartu. PLoS ONE 10(7):e0131559.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Spetsov.

Additional information

Communicated by P.S. Baenziger

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daskalova, N., Doneva, S., Stanoeva, Y. et al. Progress in Tetraploid Wheat Breeding through the Use of Synthetic Hexaploid Amphiploids. CEREAL RESEARCH COMMUNICATIONS 47, 157–169 (2019). https://doi.org/10.1556/0806.46.2018.063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/0806.46.2018.063

Keywords

Navigation