Assessment of Drought Tolerance Based Impacts with Over-expression of ZmLTP3 in Maize (Zea mays L.)

Abstract

Numerous studies showed that lipid transfer proteins (LTPs) play important roles in flower, development, cuticular wax deposition and pathogen responses; however, their roles in abiotic stresses are relatively less reported. This study characterized the function of a maize LTP gene (ZmLTP3) during drought stress. ZmLTP3 gene was transferred into maize inbred line Jing2416; subsequently the glyphosate and drought tolerance of the over-expression (OE) lines were analyzed. Analysis showed that OE lines could significantly enhance drought tolerance. Transgenic maize lines OE6, OE7 and OE8 showed lower cell membrane damage, higher chlorophyll contents, higher protective enzymes activities, better growth and development under drought condition. The results strongly indicated that overexpression of ZmLTP3 could increase drought tolerances in maize.

This is a preview of subscription content, log in to check access.

References

  1. Cameron, K.D., Teece, M.A., Smart, L.B. 2006. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140:176–183.

    CAS  Article  Google Scholar 

  2. Canevascini, S., Caderas, D., Mandel, T., Fleming, A., Dupuis, I., Kuhlemeier, C. 1996. Tissue-specific expression and promoter analysis of the tobacco Ltp1 gene. Plant Physiol. 112:513–524.

    CAS  Article  Google Scholar 

  3. Castro, M.S., Gerhardt, I.R., Orru, S., Pucci, P., Bloch, C. 2003. Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds. J. Chromatogr. B. 794:109–114.

    CAS  Article  Google Scholar 

  4. Debono, A., Yeats, T.H., Rose, J.K., Bird, D., Jetter, R., Kunst, L., Samuels, L. 2009. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell. 21:1230–1238.

    CAS  Article  Google Scholar 

  5. Edstam, M.M., Viitanen, L., Salminen, T.A., Edqvist, J. 2011. Evolutionary history of the non-specific lipid transfer proteins. Mol. Plant. 4:947–964.

    CAS  Article  Google Scholar 

  6. Edstam, M.M., Laurila, M., Höglund, A., Raman, A., Dahlström, K.M., Salminen, T.A., Edqvist, J., Blomqvist, K. 2014. Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiol. Biochem. 75:55–69.

    CAS  Article  Google Scholar 

  7. Fan, Y., Du, K., Gao, Y., Kong, Y., Chu, C., Sokolovc, V., Wang, Y. 2013. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum. Russ. J. Genet+. 49:380–387.

    CAS  Article  Google Scholar 

  8. Garcia-Garrido, J.M., Menossi, M., Puigdimen, P., Martinez-Izquierdo, J.A., Delseny, M. 1998. Characterization of a gene encoding an abscissic acid inducible type 2 lipid transfer protein from rice. FEBS Lett. 428: 193–199.

    CAS  Article  Google Scholar 

  9. Huang, M.D., Chen, T.L., Huang, A.H. 2013. Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant physiol. 163:1218–1229.

    CAS  Article  Google Scholar 

  10. Iraki, N.M., Singh, N.K., Bressan, R.A., Carpita, N.C. 1989. Cell walls of tobacco cells and changes in composition associated with reduced growth upon adaptation to water and saline stress. Plant Physiol. 91:48–53.

    CAS  Article  Google Scholar 

  11. Kader, J.C. 1996. Lipid-transfer proteins in plants. Annu. Rev. Plant Phys. 47:627–654.

    CAS  Article  Google Scholar 

  12. Kader, J.C. 1997. Lipid transfer proteins: a puzzling family of plant proteins. Trends Plant Sci. 2:66–70.

    Article  Google Scholar 

  13. Kader, J.C., Julienne, M., Vergnolle, C. 1984. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur. J. Biochem. 139:411–416.

    CAS  Article  Google Scholar 

  14. Kirubakaran, S.I., Begum, S.M., Ulaganathan, K., Sakthivel, N. 2008. Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol. Bioch. 46:918–927.

    CAS  Article  Google Scholar 

  15. Kumar, P., Tewari, R.K., Sharma, P.N. 2008. Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants. Plant Cell Rep. 27:399–409.

    CAS  Article  Google Scholar 

  16. Lee, S.B., Go, Y.S., Bae, H.J., Park, J.H., Cho, S.H., Cho, H.J., Lee, D.S., Park, O.K., Hwang, I., Suh, M.C. 2009. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol. 150:42–54.

    CAS  Article  Google Scholar 

  17. Li, J., Guo, X.W., Zhang, Z.B, Sun, H.J., Zou, H.W., Luo, C., Huang, C.L., Yu, R., Wu, Z.Y. 2014. Studies on transferring ATNCED3 into maize inbred line. Crops. 1:58–62.

    Google Scholar 

  18. Mittova, V., Guy, M., Ta, M., Volokita, M. 2004. Salinity up-regulates the antioxidative system in root mito-chondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exp. Bot. 55:1105–1113.

    CAS  Article  Google Scholar 

  19. Noctor, G., Foyer, C.H. 1998. Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high performance liquid chromatography: comparison with two other assay methods for glutathione. Anal. Biochem. 264:98–110.

    CAS  Article  Google Scholar 

  20. Nonami, H., Boyer, J.S. 1990. Primary events regulating stem growth at low water potentials. Plant Physiol. 93:1601–1609.

    CAS  Article  Google Scholar 

  21. Patkar, R.N., Chattoo, B.B. 2006. Transgenic indica rice expressing nsLTP like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol. Breeding. 17:159–171.

    CAS  Article  Google Scholar 

  22. Sterk, P., Booij, H., Schellekens, G.A., Van Kammen, A., De Vries, S.C. 1991. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell. 3:907–921.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Suelves, M., Puigdomenech, P. 1997. Different lipid transfer protein mRNA accumulates in distinct parts of Prunus amygdalus flower. Plant Sci. 129:49–56.

    CAS  Article  Google Scholar 

  24. Sun, X.Y., Zhu, Y., Zhao, M.M., Li, Z.X., Zou, H.W. 2014. Cloning and characterization of a lipid transfer protein gene, ZmLTP3, from maize. J. Maize Sci. 22:62–66.

    CAS  Google Scholar 

  25. Trevor, H.Y., Jocelyn, K.C. 2008. The biochemistry and biology of extracellular plant lipid transfer proteins (LTPs). Protein Sci. 17:191–198.

    Article  Google Scholar 

  26. Zou, H.W., Wang, X.H., Huang, C.L., Chen, J.S., Zhang, X.H., Luo, C., Yu, R., Wu, Z.Y. 2014. Stress-inducible expression of a gene encoding C-repeat binding factor 4 (CBF4) from Arabidopsis improved performance of transgenic maize under drought condition. Plant Omics J. 7:94–101.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Zou.

Additional information

Communicated by P.S. Baenziger

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, K., Jiang, M. et al. Assessment of Drought Tolerance Based Impacts with Over-expression of ZmLTP3 in Maize (Zea mays L.). CEREAL RESEARCH COMMUNICATIONS 47, 22–31 (2019). https://doi.org/10.1556/0806.46.2018.062

Download citation

Keywords

  • maize
  • lipid transfer protein
  • ZmLTP3
  • abiotic stress tolerance