Community Ecology

, Volume 9, Issue 2, pp 237–246 | Cite as

A multiscale methodological approach for monitoring the effectiveness of grassland management

  • K. VirághEmail author
  • A. Horváth
  • S. Bartha
  • I. Somodi


Conservation treatments often take place at the scale of vegetation stands and affect within-stand heterogeneity and coexistence patterns of species first. Therefore, it is important to capture changes in these characteristics of vegetation to assess response to treatments early. We propose a method based on Juhász-Nagy’s information theory models, which is capable of describing fine-scale spatial structure of plant communities and characterizes temporal processes as a function of spatial pattern. The proposed multiscale approach handles structural complexity and its dependence on spatial scales with the help of a few coenological descriptors and helps to reveal how fine-scale vegetation pattern affects dynamics. The information statistical functions used in our study (species combination diversity, FD and associatum, As) characterize the scale-dependent variability of multispecies coexistence (structural complexity) and multispecies spatial dependence (the degree of spatial organization). The maxima of these functions and the related characteristic areas (plot sizes) can be used to construct an abstract coenostate space, where spatiotemporal processes (degradation, regeneration) can be followed. We demonstrate the usefulness of the proposed methods for detecting degradation and monitoring vegetation changes in different stands (18 seminatural and 13 slightly degraded stands) of Brachypodium pinnatum dominated wooded steppe meadows in Hungary. The information theory measures captured changes of fine-scale vegetation patterns that remained unexplored by species richness and Shannon diversity. The maximum values of information statistical measures and the related characteristic areas detected differences between seminatural and slightly degraded stands. In the coenostate space, seminatural stands appeared to be less variable compared to degraded ones. Seminatural stands from various geographic locations were less dispersed in this space, i.e., less heterogeneous than degraded ones. The two regions of the coenostate-space defined by the set of seminatural and degraded stands were significantly different. Furthermore, we conclude that the region containing seminatural stands can be regarded as a reference region in this abstract space. Temporal variation of seminatural and degraded stands was also clearly different. Therefore, we recommend the approach for exploring the actual dynamic states of vegetation stands to be treated and for following consequences of treatments in order to determine effectiveness of the conservation action.


Coenostate-space Fine-scale pattern Indicators of degradation and regeneration Information theory Spatial scaling Structural complexity 



Florula (species combination) Diversity




Characteristic Area.


Tutin et al. (2001) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anand, M. 2000. The fundamentals of vegetation change: complexity rules. Acta Biotheor. 48: 1–14.Google Scholar
  2. Anand, M. and L. Orlóci. 1996. Complexity in plant communities: the notion and quantification. J. Theoret. Biol. 179: 179–186.CrossRefGoogle Scholar
  3. Anand, M. and R. Kadmon. 2000. Community-level analysis of spatiotemporal plant dynamics. EcoScience 7: 101–110.CrossRefGoogle Scholar
  4. Bartha, S. 1992. Preliminary scaling for multispecies coalitions in primary succession. Abstr. Bot. 16: 31–41.Google Scholar
  5. Bartha, S. 2001. Spatial relationships between plant litter, gopher disturbance and vegetation at different stages of old-field succession. App. Veg. Sci. 4: 53–62.CrossRefGoogle Scholar
  6. Bartha, S., G. Campatella, R. Canullo, J. Bódis and L. Mucina. 2004. On the importance of fine-scale spatial complexity in vegetation restoration. Int. J. Ecol. Environ. Sci. 30: 101–116.Google Scholar
  7. Bartha, S., T. Czárán and J. Podani. 1998. Exploring plant community dynamics in abstract coenostate spaces. Abstr. Bot. 22: 49–66.Google Scholar
  8. Bartha, S. and M. Kertész. 1998. The importance of neutral-models in detecting interspecific spatial assocations from ’trainsect’ data. Tiscia 31: 85–98.Google Scholar
  9. Bobbink, R. and J.H. Willems. 1987. Increasing dominance of Brachypodium pinnatum (L.) Beauv. in chalk grasslands: a threat to a species-rich ecosystem. Biol. Conserv. 40: 301–314.CrossRefGoogle Scholar
  10. Bobbink, R. and J.H. Willems. 1992. Restoration management of abandoned chalk grassland in the Netherlands. Biodiversity and Conserv. 57: 1–21.Google Scholar
  11. Campetella, G., R. Canullo and S. Bartha. 1999. Fine-scale spatial pattern analysis of the herb layer of woodland vegetation using information theory. Plant Biosyst. 133: 277–288.CrossRefGoogle Scholar
  12. Campetella, G., R. Canullo and S. Bartha. 2004. Coenostate descriptors and spatial dependence in vegetation – derived variables in monitoring forest dynamics and assembly rules. Community Ecol. 5: 105–114.CrossRefGoogle Scholar
  13. Canullo, R. and G. Campetella. 2005. Spatial patterns of plant species, guilds and biological types in the regenerative phase of a beech coppice (Torricchio Mountain Nature Reserve, Apennines, Italy). Acta Bot. Gallica 152: 529–543.CrossRefGoogle Scholar
  14. Cardinale, B.J., K. Nelson and M.A. Palmer. 2000. Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91: 175–183.CrossRefGoogle Scholar
  15. Chesson, P.L. and T.J. Chase. 1986. Overview. Non-equilibrium community theories: chance, variability, history and coexistence. In: F. Diamond and T.J. Case (eds.), Community Ecology. Harper and Row, NY. pp. 229–239.Google Scholar
  16. Czárán, T. and S. Bartha. 1989. The effect of spatial pattern on community dynamics. A comparison of simulated and field data. Vegetatio 83: 229–239.CrossRefGoogle Scholar
  17. Czárán, T. and S. Bartha. 1992. Spatiotemporal dynamic models of plant populations and communities. TREE 7: 38–42.PubMedPubMedCentralGoogle Scholar
  18. Diggle, P.J. 1983. Statistical Analysis of Spatial Point Patterns.Academic Press, London.Google Scholar
  19. Drake, J.A. 1990. Communities as assembled structures: do rules govern pattern? TREE 5: 159–164.PubMedPubMedCentralGoogle Scholar
  20. Facelli, J.M. and S.T.A. Pickett. 1990. Markovian chains and the role of history in succession. TREE 5: 27–31.PubMedPubMedCentralGoogle Scholar
  21. Fekete, G., Virágh, K., Aszalós, R. and Orlóci L. 1998. Landscape and coenological differentiation in Brachypodium pinnatum grassland. Coenoses 13: 39–53.Google Scholar
  22. Fekete, G., K. Virágh, R. Aszalós and I. Précsényi. 2000. Static and dynamic approaches to landscape heterogeneity in the Hungarian wooded steppe zone. J. Veg. Sci. 11: 375–382.CrossRefGoogle Scholar
  23. Gosz, J., D. Peters, M. Kertész, E. Kovács-Láng, Gy. Kröel-Dulay and S. Bartha. 2000. Organization of grasslands along ecological gradients: US-Hungarian LTER Grassland cooperation. In: K. Lajtha and K. Vanderbilt (eds.), Cooperation in Long-term Ecological research in Central and Eastern Europe. Proceedings of the ILTER Regional Workshop, 1999, Budapest, Hungary. Oregon State University, Corvallis, OR. pp. 67–76.Google Scholar
  24. Grabulsky, M.F. and J.M. Paruelo. 2004. Remote sensing of protected areas to derive baseline vegetation functioning characteristics. J. Veg. Sci. 15: 711–720.CrossRefGoogle Scholar
  25. Hobbs, R.J. and D.A. Norton. 1996. Towards a conceptual framework for restoration ecology. Restoration Ecol. 4: 83–110.CrossRefGoogle Scholar
  26. Hochstrasser, T. 1995. The structure of different loess grassland types in Hungary. M.Sc. thesis, Vácrátót, Hungary. 74 p.Google Scholar
  27. Hooper, D.U., F.S. Chapin, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, L.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A.J. Symstad, J. Vandermeer and D.A. Wardle. 2005. Effect of biodiversity on ecosystem functioning: consequences of current knowledge. Ecol. Monogr. 75: 3–35.CrossRefGoogle Scholar
  28. Horváth, A. 1998. INFOTHEM program: new possibilities of spatial series analysis based on information theory methods. Tiscia 31: 71–84.Google Scholar
  29. Horváth, A. 2002. Organization of spatial pattern of loess vegetation in the Mezöföld region. Synbiologica Hungarica 5, Scientia, Budapest. 174 p. (in Hungarian)Google Scholar
  30. Illyés, E. 2002. Vegetációtérképezés és löszgyepek vizsgálata Máriahalom környékén (Vegetation mapping and study of loess grasslands at the hilly region of Eastern Gerecse in Hungary ). (MSc Thesis), ELTE, Budapest.Google Scholar
  31. Ittzés, P., É. Jakó, Á. Kun, A. Kun and J. Podani. 2005. A discrete mathematical method for the analysis of spatial pattern. Community Ecol. 6: 177–190.CrossRefGoogle Scholar
  32. Juhász-Nagy, P. 1976. Spatial dependence of plant populations. Part 1. Equivalence analysis (an outline for a new model). Acta Bot. Acad. Sci. Hung. 22: 61–78.Google Scholar
  33. Juhász-Nagy, P. 1980. Modelling of coexistential structures in coenology. Academic Doctoral Thesis, MTA, Budapest (in Hungarian). 238 p.Google Scholar
  34. Juhász-Nagy, P. 1984. Spatial dependence of plant populations. Part 2. A family of new models. Acta Bot. Acad. Sci. Hung. 30: 363–402.Google Scholar
  35. Juhász-Nagy, P. 1993. Notes on compositional diversity. Hydrobiol. 249: 173–182.CrossRefGoogle Scholar
  36. Juhász-Nagy, P. and J. Podani. 1983. Information theory methods for the study of spatial processes in succession. Vegetatio 51: 129–140.CrossRefGoogle Scholar
  37. Kertész, M., B. Lhotsky and I. Hahn. 2001. Detection of fine-scale relations between species composition and biomass in grassland. Community Ecol. 2: 221–230.CrossRefGoogle Scholar
  38. Kinzig, A.P., S.W. Pacala and D. Tilman. 2002. (eds.) The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions. Princeton Univ. Press, Princeton, New Jersey, USA.Google Scholar
  39. Li, Z.Q., J. Bogaert and I. Nijs. 2005. Gap pattern and colonization opportunities in plant communities: effects of species richness, mortality, and spatial aggregation. Ecography 28: 777–790.CrossRefGoogle Scholar
  40. Loreau, M., P. Naeem, P. Inchausti, J. Bengtsson, J.P. Grime, A. Hector, D.U. Hooper, M.A. Huston, D. Raffaelli, B. Schmid, D. Tilman and D.A. Wardle. 2001. Biodiversity and ecosystem functioning. Current knowledge and future challenges. Science 290: 804–808.CrossRefGoogle Scholar
  41. Loreau, M., Naeem, S., Inchausti, P. (eds.) 2002. Biodiversity and Ecosystem Functioning. Synthesis and Perspectives. Oxford Univ. Press, Oxford. 294 p.Google Scholar
  42. Magurran, A.E. 1988. Ecological Diversity and its Measurement. Princeton Univ. Press, Princeton.CrossRefGoogle Scholar
  43. Myster, R.W. and S.T.A. Pickett. 1990. Initial conditions, history and successional pathways in ten contrasting old fields. Am. Midl. Nat. 124: 231–238.CrossRefGoogle Scholar
  44. Oborny, B. 1994. Growth rules in clonal plants and predictability of the environment: A simulation study. J. Ecol. 82: 341–351.CrossRefGoogle Scholar
  45. Oksanen, J. 1997. Plant neighbour diversity. J. Veg. Sci. 8: 255–258.CrossRefGoogle Scholar
  46. Pickett, S.T.A. and V.T. Parker. 1994. Avoiding the old pitfalls: opportunities in a new discipline. Restoration Ecol. 2: 75–79.CrossRefGoogle Scholar
  47. Pickett, S.T.A., V.T. Parker and P. Fiedler. 1992. The new paradigm in ecology. Implications for conservation biology above the species level. In: P. Fiedler and S. Jain (eds.), Conservation Biology. The Theory and Practice of Nature Conservation, Preservation, and Management. Chapman and Hall, London, pp. 65–88.Google Scholar
  48. Pielou, E.C. 1975. Ecological Diversity. Wiley, New York.Google Scholar
  49. Podani, J. 1984. Spatial processes in the analysis of vegetation: theory and review. Acta Bot. Hung. 30: 75–118.Google Scholar
  50. Podani, J. 1992. Space series analysis of vegetation processes reconsidered. Abstr. Bot. 17: 37–51.Google Scholar
  51. Podani, J. 2006. With a machete through the jungle: some thoughts on community diversity. Acta Biotheor. 54: 125–131.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Podani, J., T. Czárán and S. Bartha. 1993. Pattern, area and diversity: the importance of spatial scale in species assemblages. Abstr. Bot. 17: 289–302.Google Scholar
  53. Podani, J., T. Czárán and I. Scheuring. 1998. Individual-centered analysis of community patterns representing multi-species assemblages. J. Veg. Sci. 8: 259.270.CrossRefGoogle Scholar
  54. Pueyo, Y., C.L. Aladas and C. Ferrer-Benimeli. 2005. Is the analysis of plant community structure better than common species-diversity indices for assessing the effects of livestock grazing on a Mediterranean arid ecosystem? J. Arid Environ. 64: 698–712.CrossRefGoogle Scholar
  55. Ricotta, C. and M. Anand. 2004. Spatial scaling of structural complexity in plant communities. Int. J. Ecol. Environ. Sci. 30: 93–99.Google Scholar
  56. Ricotta, C. and M. Anand. 2006. Spatial complexity of ecological communities: Bringing the gap between probabilistic and nonprobabilistic uncertainty measures. Ecol. Model. 197: 59–66.CrossRefGoogle Scholar
  57. Shannon, C. 1948. A mathematical theory of communication. Bell. Syst. Tech. J. 27: 379–423.CrossRefGoogle Scholar
  58. Sluis, W.J. 2002. Patterns of species richness and composition in re-created grassland. Restoration Ecol. 10: 677–684.CrossRefGoogle Scholar
  59. Standovár, T., P. Ódor, R. Aszalós and L. Gálhidy. 2006. Sensitivity of ground layer vegetation diversity descriptors in indicating forest naturalness. Community Ecol. 7: 199–209.CrossRefGoogle Scholar
  60. Szollát, Gy. and S. Bartha. 1991. Pattern analyses of dolomite grassland communities using information theory models. Abstr. Bot. 15: 47–60.Google Scholar
  61. Thórhalsdóttir, T.E. 1990. The dynamics of a grassland community. A simultaneous investigation of spatial and temporal heterogeneity at various scales. J. Ecol. 78: 884- 908.CrossRefGoogle Scholar
  62. Tóthmérész, B. 1994. Statistical analysis of spatial pattern in plant communities. Coenoses 9: 33–41.Google Scholar
  63. Tóthmérész, B. 1998. On the characterization of scale-dependent diversity. Abstr. Bot. 22: 149–156.Google Scholar
  64. Tóthmérész, B. and Zs. Erdei. 1992. The effect of dominance in information theory characteristics of plant communities. Abstr. Bot. 16: 43–47.Google Scholar
  65. Tutin, T.G. (ed.) et al. 2001. Flora Europaea, CD-version. Cambridge Univ. Press, Cambridge.Google Scholar
  66. Virágh, K. 1989. The effect of selective herbicides on structural changes of an old perennial grassland community; An experimental approach to the study of community stability: resilience and resistance. ActaBot. Hung. 35: 99–125.Google Scholar
  67. Virágh, K. 1991. Diversity and resilience after herbicide disturbances in a Hungarian perennial grassland community. In: F.D. Pineda, M.A. Casado et al. (eds.), Biological Diversity. Fundación Ramon Aceres, Madrid. pp. 223–227.Google Scholar
  68. Virágh, K. andS. Bartha. 1996. The effect of current dynamical state of a loess steppe community on its responses to disturbances. Tiscia 30: 3–13.Google Scholar
  69. Virágh, K. and S. Bartha. 1998. Interspecific associations in different successional stages of Brachypodium pinnatum grasslands after deforestation in Hungary. Tiscia 31: 3–12.Google Scholar
  70. Virágh, K. and S. Bartha. 2003. Species turnover as a function of vegetation pattern. Tiscia 34: 47–56.Google Scholar
  71. Virágh, K., S. Bartha, S. and Z. Botta-Dukát. 2000. Fine-scale coalition structure in Brachypodium grassland. Proc. IAVS Symp., 2000. Opulus Press, Uppsala, p. 102.Google Scholar
  72. Watkins, A.J. and J.B. Wilson. 1992. Fine scale community structure of lawns. J. Ecol. 80: 15–24.CrossRefGoogle Scholar
  73. White, P.S. and J.L. Walker. 1997. Approximating Nature’s variation: selecting and using reference information in restoration ecology. Restoration Ecol. 5: 338–349.CrossRefGoogle Scholar
  74. Wu, J. and O. Loucks. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70: 439–464.CrossRefGoogle Scholar
  75. Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, New Jersey.Google Scholar
  76. Zobel, M. 1997. The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence. TREE 12: 266–269.PubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Ecology and Botany of the Hungarian Academy of SciencesVácrátótHungary

Personalised recommendations