Measuring ecosystem function: consequences arising from variation in biomass-productivity relationships

Abstract

Species diversity loss is expected to alter ecosystem function, but previous work has demonstrated inconsistent relationships between these two factors. Productivity is the most common measure of ecosystem function, but given the difficulty in measuring productivity, standing biomass or change in biomass are frequently used as proxy measures. A review of the recent ecosystem-function literature revealed that 93% of studies measure productivity as biomass, thereby assuming a strong positive relationship between these two variables. We tested this assumption by measuring biomass and productivity in seagrass beds in the Gulf of Mexico. We found that the relationship between standing biomass and productivity could be positive or negative, depending on site. Change in biomass over months inconsistently underestimated short-term productivity. The relationship between biomass and productivity may depend on plant age, successional stage, or site-specific rates of tissue loss to herbivory, senescence, or disturbance. Our results suggest that if biomass continues to be used as a measure of productivity without justification, highly productive communities that typically show little change in biomass, such as healthy climax communities, will not be interpreted as such. The conflicting results of previous studies investigating the relationship between diversity and productivity may be due to differences in the inherently variable relationship between biomass and productivity at different sites and scales.

References

  1. Agawin, N.S.R., Duarte, C.M., Fortes, M.D., Uri, J.S. and Vermaat, J.E. 2001. Temporal changes in the abundance, leaf growth and photosynthesis of three cooccurring Philippine seagrasses. J. Exp. Mar. Biol. Ecol. 260: 217–239.

    Article  Google Scholar 

  2. Begon, M., Townsend, C.R. and Harper, J.L. 2006. Ecology: from Individuals to Ecosystems. Blackwell Publishing, Malden, MA.

    Google Scholar 

  3. Belsky, A.J., Carson, W.P., Jensen, C.L. and Fox, G.A. 1993. Over-compensation by plants herbivore optimization or red herring. Evolutionary Ecology 7: 109–121.

    Article  Google Scholar 

  4. Blanchette, C.A. 1996. Seasonal patterns of disturbance influence recruitment of the sea palm, Postelsia palmaeformis. J. Exp. Mar. Biol. Ecol. 197:1–14.

    Article  Google Scholar 

  5. Bruno, J.F., Boyer, K.E., Duffy, J.E., Lee, S.C. and Kertesz, J.S. 2005. Effects of macroalgal species identity and richness on primary production in benthic marine communities. Ecol. Lett. 8: 1165–1174.

    Article  Google Scholar 

  6. Bruno, J.F., Lee S.C., Kertesz, J.S., Carpenter, R.C., Long, Z.T. and-Duffy, J.E. 2006. Partitioning the effects of algal species identity and richness on benthic marine primary production. Oikos 115: 170–178.

    Article  Google Scholar 

  7. Carpenter, R.C. 1986. Partitioning herbivory and its effects on coralreef algal communities. Ecol. Monogr. 56: 345–363.

    Article  Google Scholar 

  8. Cubit, J.D. 1984. Herbivory and the seasonal abundance of algae on a high intertidal rocky shore. Ecology 65: 1904–1917.

    Article  Google Scholar 

  9. Cyr, H. and Pace, M.L. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148–150.

    Article  Google Scholar 

  10. Dayton, P.K., Tegner, M.J., Edwards, P.B. and Riser, K.L. 1999. Temporal and spatial scales of kelp demography: The role of oceanographic climate. Ecol. Monogr. 69: 219–250.

    Article  Google Scholar 

  11. Downing, A.L. and Leibold, M.A. 2002. Ecosystem consequences of species richness and composition in pond food webs. Nature 416: 837–841.

    CAS  Article  Google Scholar 

  12. Duarte, C.M. and Chiscano, C.L. 1999. Seagrass biomass and production: a reassessment. Aquatic Bot. 65: 159–174.

    Article  Google Scholar 

  13. Duffy, J.E., Macdonald, K.S., Rhode, J.M. and Parker, J.D. 2001. Grazer diversity, functional redundancy, and productivity in seagrass beds: An experimental test. Ecology 82: 2417–2434.

    Article  Google Scholar 

  14. Fourqurean, J.W., Willsie, A., Rose, C.D. and Rutten, L.M. 2001. Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Mar. Biol. 138: 341–354.

    Article  Google Scholar 

  15. Gaylord, B., Blanchette, C.A. and Denny, M.W. 1994. Mechanical consequences of size in waveswept algae. Ecol. Monogr. 64: 287–313.

    Article  Google Scholar 

  16. Gower, S.T., McMurtrie, R.E. and Murty, D. 1996. Aboveground net primary production decline with stand age: Potential causes. Trends in Ecology & Evolution 11: 378–382.

    CAS  Article  Google Scholar 

  17. Gurevitch, J., Scheiner, S.M. and Fox, G.A. 2002. The Ecology of Plants. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  18. Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M.C., Diemer, M., Dimitrakopoulos, P.G., Finn, J.A., Freitas, H., Giller, P.S., Good, J., Harris, R., Hogberg, P., Huss-Danell, K., Joshi, J., Jumpponen, A., Korner, C., Leadley, P.W., Loreau, M., Minns, A., Mulder, C.P.H., O’Donovan, G., Otway, S.J., Pereira, J.S., Prinz, A., Read, D.J., Scherer-Lorenzen, M., Schulze, E.D., Siamantziouras, A.S.D., Spehn, E.M., Terry, A.C., Troumbis, A.Y., Woodward, F.I., Yachi, S. and Lawton, J.H. 1999. Plant diversity and productivity experiments in European grasslands. Science 286: 11231127.

    Article  Google Scholar 

  19. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., La-vorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A.J., Vandermeer, J. and Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75: 335.

    Article  Google Scholar 

  20. Krebs, C.J. 2001. Ecology. Benjamin Cummings, San Francisco, CA. 5th edition.

    Google Scholar 

  21. Menge, B.A. 1976. Organization of NewEngland rocky intertidal community role of predation, competition, and environmental heterogeneity. Ecol. Monogr. 46: 355–393.

    Article  Google Scholar 

  22. Odum, H.T. 1959. Fundamentals of Ecology. W. B. Saunders Company, Philadelphia, PA.

    Google Scholar 

  23. Odum, H.T. and Odum, E.P. 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr. 25: 291–320.

    Article  Google Scholar 

  24. Paige, K.N. and Whitham, T.G. 1987. Overcompensation in response to mammalian herbivory the advantage of being eaten. Am. Nat. 129: 407–416.

    Article  Google Scholar 

  25. Quinn, G.P. and Keough, M.J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  26. Ricklefs, R.E. and Miller, G.L. 2000. Ecology. W.H. Freeman and Company, New York, NY.

    Google Scholar 

  27. Rosenzweig, M.L. and Abramsky, Z. 1993. How are diversity and productivity related? In: Ricklefs R.E. and Schluter D. (eds), Species Diversity in Ecological Communities. University of Chicago Press, Chicago, IL. pp. 52–65.

    Google Scholar 

  28. Roxburgh, S.H., Berry, S.L., Buckley, T.N., Barnes, B. and Roderick, M.L. 2005. What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production. Funct. Ecol. 19: 378–382.

    Article  Google Scholar 

  29. SAS Institute, Inc. 2001. JMP Version 4.0.4.

  30. Sokal, R.R. and Rohlf, F.J. 1995. Biometry. W. H. Freeman and Company, New York, NY. 3rd edititon.

    Google Scholar 

  31. Tomlinson, P.B. and Vargo, G.A. 1966. On morphology and anatomy of turtle grass Thalassia testudinum (Hydrocharitaceae) .I. Vegetative morphology. Bull. Mar. Sci. 16: 748–761.

    Google Scholar 

  32. Valentine, J.F., Heck, K.L., Busby, J. and Webb, D. 1997. Experimental evidence that herbivory increases shoot density and productivity in a subtropical turtlegrass (Thalassia testudinum) meadow. Oecologia 112: 193–200.

    Article  Google Scholar 

  33. Williams, S.L. and Heck, K.L. 2001. Seagrass community ecology. In: Bertness, M.D., Gaines, S.D. and Hay, M.E. (eds), Marine Community Ecology. Sinauer Associates, Inc., Sunderland, MA. pp. 317–337.

    Google Scholar 

  34. Zieman, J.C. 1974. Methods for study of growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture 4: 139–143.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. P. terHorst.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

terHorst, C.P., Munguia, P. Measuring ecosystem function: consequences arising from variation in biomass-productivity relationships. COMMUNITY ECOLOGY 9, 39–44 (2008). https://doi.org/10.1556/ComEc.9.2008.1.5

Download citation

Keywords

  • Seagrass
  • Spatial scale
  • Thalassia testudinum