Distribution of plant communities, ecological strategy types and diversity along a moisture gradient

Abstract

The influence of water regime on the zonation of wetland communities, distribution patterns of plant species, ecological strategies and biodiversity, was studied in this work. Vegetation of the herbaceous wetland was sampled along a transect, in accordance with the standard central European method. Water level was also measured. The changes in plant species composition, plant functional types (ecological strategies, life forms) and diversity were studied. Classification of vegetation relevés enabled the definition of five grassland communities. The same pattern remained in DCA ordination also when the species matrix was replaced with a matrix of ecological strategies. Relevés were always segregated into distinct plant communities and distributed along the moisture gradient in the same way. Biodiversity is strongly negatively correlated with moisture–it is decreasing with decreasing ground level. Plant ecological strategy types (C-S-R) change significantly along the transect as well. In communities thriving on the driest sites (Triseto-Centaureetum), there are three times more C- than C-S-strategists, while in the wettest sites (Caricetum elatae) C-S-strategists predominate over C-strategists by almost two times. At the same time R-and C-R-strategists, as well as therophytes, which are present in drier sites almost disappear in the wettest sites. We show that the moisture gradient essentially influences the distribution pattern of plant communities, species diversity, and manifestation of certain ecological strategy types.

Abbreviations

DCA:

Detrended Correspondence Analysis

C-S-R:

Competitors-Stress tolerators-Ruderals (strategy types)

WPGMA:

Weighted Pair Group Method with Averaging

Ce:

Caricetum elatae

Cv:

Caricetum vulpinae

AJ:

Agrostio-Juncetum conglomerati

SD:

Succisello-Deschampsietum cespitosae

TC:

Triseto-Centaureetum

References

  1. Balátová-Tuláèková, E. 1968. Grundwasserganglinien und Wie-sengesellschaften. Acta Sci. Nat. Brno. 2 (2):1–37.

    Google Scholar 

  2. Balátová-Tuláèková, E., L. Mucina, T. Ellmauer and S. Wallnöfer. 1993. Phragmiti-Magnocaricetea Klika et Novak 1941. In: G. Grabherr and L. Mucina. (eds), Die Pflanzengesellschaften Österreichs, Teil 2. Fischer, Jena, Stuttgart. pp. 79–130.

    Google Scholar 

  3. Botta-Dukát, Z., M. Chytrý, P. Hájková and M. Havlová. 2005. Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe. Preslia 77:89–111.

    Google Scholar 

  4. Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, Wien.

    Google Scholar 

  5. Brose, U. and K. Tielbörger. 2005. Subtle differences in environmental stress along a flooding gradient affect the importance of inter-specific competition in an annual plant community. Plant Ecol. 178:51–59.

    Article  Google Scholar 

  6. Caccianiga, M., A. Luzzaro, S. Pierce, R.M. Ceriani and B. Cerabolini. 2006. The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20.

    Article  Google Scholar 

  7. Chytrý, M. and Z. Otýpková. 2003. Plot sizes used for phytosociological sampling of European vegetation. J. Veg. Sci. 14:563–570.

    Article  Google Scholar 

  8. Carni, A., J. Franjič, U. Šilc and ▯. Škvorc. 2005. Floristical, ecological and structural diversity of Vegetation of forest fringes of the northern Croatia along a climatic gradient. Phyton 45:287–303.

    Google Scholar 

  9. Díaz, S. and M. Cabido. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8:463–474.

    Article  Google Scholar 

  10. Dwire, K.A., J.B. Kauffman, E.N.J. Brookshire and J.E. Baham. 2004. Plant biomass and species composition along an environmental gradient in montane riparian meadows. Oecologia 139:309–317.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ehrendorfer, F. 1973. Liste der Gefässpflanzen Mitteleuropas. Fischer, Stuttgart.

    Google Scholar 

  12. Ellmauer, T. and L. Mucina. 1993. Molinio-Arrhenatheretea. In: L. Mucina, G. Grabherr and T. Ellmauer (eds), Die Pflanzengesellschaften Österreichs, Teil 1. Fischer, Jena Stuttgart, pp. 297–401.

    Google Scholar 

  13. Feoli, E. and M. Scimone. 1984. A quantitative view of textural analysis of vegetation and examples of application of some methods. Arch. Bot. Biogeogr. Ital. 60:72–94.

    Google Scholar 

  14. Grime, J.P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242:344–347.

    Article  Google Scholar 

  15. Grime, J.P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester.

    Google Scholar 

  16. Grime, J.P. 2001. Plant Strategies, Vegetation Processes and Ecosystem Properties. 2nd ed. Wiley, Chichester.

    Google Scholar 

  17. Hájek, M. and P. Hájková. 2004. Environmental determinants of variation in Czech Calthion wet meadows: a synthesis of phytosociological data. Phytocoenologia 34:33–54.

    Article  Google Scholar 

  18. Hájková, P., M. Hájek and I. Apostolova. 2006. Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Plant Ecol. 184:111–130.

    Article  Google Scholar 

  19. Harrison, S., K.F. Davies, H.D. Safford and J.H. Viers. 2006. Beta diversity and the scale-dependence of the productivity-diversity relationship: a test in the Californian serpentine flora. J. Ecol. 94:110–117.

    Article  Google Scholar 

  20. Hobbie, S.E., D.B. Jensen and F.S. Chapin III. 1994. Resource supply and disturbance as controls over present and future plant diversity. In: E.D. Schulze and H.A. Mooney (eds), Biodiversity and Ecosystem Function. Springer, Berlin. pp. 385–408.

    Google Scholar 

  21. Hudon, C., P. Gagnon, J.-P. Amyot, G. Letourneau, M. Jean, C. Plant, D. Rioux and M.Deschenes. 2005. Historical changes in herbaceous wetland distribution induced by hydrological conditions in Lake Saint-Pierre (St. Lawrence River, Quebec, Canada). Hydrobiologia 539:205–224.

    Article  Google Scholar 

  22. Joyce, C. 2001. The sensitivity of a species-rich flood-meadow plant community to fertilizer nitrogen: the Lu▯nice river floodplain, Czech Republic. Plant Ecol. 155:47–60.

    Article  Google Scholar 

  23. Joyce, C.B. and P.M. Wade. 1998. Wet Grasslands: a European Perspective. In: C.B. Joyce and P.M. Wade (eds), European Wet Grasslands: Biodiversity, Management and Restoration. Wiley, Chichester, pp. 1–12.

    Google Scholar 

  24. Keddy, P.A. 1992. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3:157–164.

    Google Scholar 

  25. Klotz, S., I. Kühn and W. Durka. 2002. BIOLFLOR: Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde 38:1–334.

    Google Scholar 

  26. Kluse, J.S. and B.H. Allen Diaz. 2005. Importance of soil moisture and its interaction with competition and clipping for two mountain meadow grasses. Plant Ecol. 176:87–99.

    Article  Google Scholar 

  27. Körner, Ch. 1994. Scaling from species to vegetation: The usefulness of functional groups. In: E.D. Schulze and H.A. Mooney (eds), Biodiversity and Ecosystem Function. Springer, Berlin. pp. 117–140.

    Google Scholar 

  28. Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford.

    Google Scholar 

  29. McCrea, A.R., I.C. Trueman, M.A. Fullen, M.D. Atkinson and L. Besenyei. 2001. Relationships between soil characteristics and species richness in twobotanically heterogeneous created meadows in the urban English West Midlands. Biol. Conserv. 97:171–180.

    Article  Google Scholar 

  30. Pierce, S., A. Vianelli and B. Cerabolini. 2005. From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Funct.Ecol. 19:763–776.

    Article  Google Scholar 

  31. Pierce, S., A. Luzzaro, M. Caccianiga, R.M. Ceriani and B. Cerabolini. 2007. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95:698–706.

    Article  Google Scholar 

  32. Pillar, V.D. 1999. On the identification of optimal plant functional types. J. Veg. Sci. 10:631–640.

    Article  Google Scholar 

  33. Podani, J. 2001. SYN-TAX 2000: Computer Programs for Data Analysis in Ecology and Systematics. Scientia Publishing, Budapest.

    Google Scholar 

  34. Podani, J. and P. Csontos. 2006. Quadrat size dependence, spatial autocorrelation and the classification of community data. Community Ecol. 7:117–127.

    Article  Google Scholar 

  35. Schaffers, A.P. 2002. Soil, biomass and management of semi-natural vegetation. Part II. Factors controlling species diversity. Plant Ecol. 158:247–268.

    Article  Google Scholar 

  36. Selinger-Looten, R., F. Grevilliot and S. Muller. 1999. Structure of plant communities and landscape patterns in alluvial meadows of two floodplains in the north-east of France. Landscape Ecol. 14:213–229.

    Article  Google Scholar 

  37. ter Braak, C.J.F. and P. Šmilauer. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca.

    Google Scholar 

  38. ter Braak, C.J.F. and P.F.M. Verdonschot. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57:255–289.

    Article  Google Scholar 

  39. Tichý, L. 2002. JUICE: software for vegetation classification. J. Veg. Sci. 13:451–453.

    Article  Google Scholar 

  40. Tilman, D., D. Wedin and J. Knops. 1996. Productivity and sustain-ability influenced by biodiversity in grassland ecosystems. Nature 379:718–720.

    Article  CAS  Google Scholar 

  41. Urban, K.E. 2005. Oscillating vegetation dynamics in a wet heath-land. J. Veg. Sci. 16:111–120.

    Article  Google Scholar 

  42. van der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114.

    Article  Google Scholar 

  43. van Eck, W.H.J.M., H.M. van de Steeg, C.W.P.M. Bloom and H. de Kroon. 2005. Recruitment limitation along disturbance gradient in river floodplains. J. Veg. Sci. 16:103–110.

    Article  Google Scholar 

  44. Wassen, M.J., W.H.M. Peeters and H. Olde Venterink. 2002. Patterns in vegetation, hydrology and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecol. 165:27–43.

    Article  Google Scholar 

  45. Westhoff, V. and E. van der Maarel. 1973. The Braun-Blanquet approach. In: R.H. Whittaker (ed), Ordination and Classification of Communities. Junk, The Hague. pp. 617–726.

    Google Scholar 

  46. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21:213–251.

    Google Scholar 

  47. Whittaker, R.H. 1975. Communities and Ecosystems. MacMillan, New York.

    Google Scholar 

  48. Zelnik, I. 2005a. Conservation of the wet meadows in south-eastern Slovenia. Hacquetia 4:91–102.

    Google Scholar 

  49. Zelnik, I. 2005b. Meadows of the order Molinietalia Koch 1926 in South-Eastern Slovenia. Fitosociologia 14:3–32.

    Google Scholar 

  50. Zelnik, I. 2005c. Vegetation of the Meadows from the order Molinietalia W.Koch 1926 and contact sites in Slovenia. PhD Thesis, Univ. Ljubljana, Ljubljana, Slovenia.

  51. Zelnik, I. 2007. New grassland association Triseto-Centaureetum macroptili ass. nova in Slovenia. Hacquetia 6:77–90.

    Article  Google Scholar 

  52. Zhou, D., H. Gong, Z. Luan, J. Hu and F. Wu. 2006. Spatial pattern of water controlled wetland communities on the Sanjiang Flood-plain, Northeast China. Community Ecol. 7:223–234.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Zelnik.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Zelnik, I., Čarni, A. Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. COMMUNITY ECOLOGY 9, 1–9 (2008). https://doi.org/10.1556/ComEc.9.2008.1.1

Download citation

Keywords

  • Biodiversity
  • Marsh
  • Plant functional types
  • Vegetation
  • Wet meadow

Nomenclature

  • Ehrendorfer (1973) for taxa, Ellmauer and Mucina (1993)
  • Balátová-Tuláčková et al. (1993)
  • Zelnik (2005b, 2007) for syntaxa