Community Ecology

, Volume 8, Issue 2, pp 195–207 | Cite as

Testing the validity of successional predictions on an old-field chronosequence in Hungary

  • A. CsecseritsEmail author
  • R. Szabó
  • M. Halassy
  • T. Rédei


We studied the vegetation of 54 sandy old-fields abandoned at different times. We first surveyed the vegetation in 1998 and developed predictions about the spontaneous succession using the chronosequence approach. Afterwards, we repeated the survey in 2000, 2001, 2002 and 2003, and based on this monitoring we tested the predictions of the chronosequence study. For both approaches, we analysed the changes in functional group composition during succession. According to the chronosequence study, the most important changes occurred in the youngest old-fields, abandoned 1–4 years ago: the species number and abundance of annuals, disturbance-requiring and anthropogenic species decreased, and those of perennials, grassland generalists, and species with low disturbance-tolerance increased. No changes were predicted for the older fields. The monitoring confirmed the predictions for the youngest old-fields. However, during the 5 years of monitoring several functional groups changed in their species number or abundance even on the older abandoned fields. Both of the methods showed that secondary succession on sandy old-fields is relatively fast. The chronosequence study provided a more static view of the processes, while the multi-year monitoring revealed that there were considerable inter-annual changes as well. With the yearly monitoring we can detect the effect of additional factors, such as land use changes (e.g., changes in grazing intensity) and yearly climate fluctuations on the direction and rate of secondary succession.


Abandoned field Disturbance tolerance Habitat preference Life form Monitoring Sandy grassland Space-for-time substitution Species groups Succession 



Plant Functional Type


Blue-Small Successional Study


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakker, J.P., H. Olff, J.H. Willems and M. Zobel. 1996. Why do we need permanent plots in the study of long-term vegetation dynamics? Journal of Vegetation Science 7: 147–156.Google Scholar
  2. Bard, G.E. 1952. Secondary succession on the piedmont of New Jersey. Ecological Monographs 22: 195–215.CrossRefGoogle Scholar
  3. Bartha, S., T. Rédei, Gy. Szollát, J. Bódis and L. Mucina. 1998. Északi és déli kitettségű dolomit sziklagyepek térbeli mintázatainak összehasonlítása. In: Csontos P. (ed.) Sziklagyepek szünbotanikai kutatása. Zólyomi Bálint professzor emlékének. Scientia kiadó. Budapest. pp.159–182.Google Scholar
  4. Bartha, S., M. Kertész, Zs. Molnár, A. Csecserits, G. Henebry and E. Kovács-Láng. 1999–2000. Homoki gyepek dinamikájának rekonstrukciója felhagyott szántóföldek és zavart „ősgyepek” mintázataiból. Botanikai Közlemények 86–87: 248–249.Google Scholar
  5. Bartha, S., S.J. Meiners, S.T.A. Pickett and M.L. Cadenasso. 2003. Plant colonization windows in a mesic old field succession. Applied Vegetation Science 6: 205–212.CrossRefGoogle Scholar
  6. Bartha S., G. Campatella, R. Canullo, J. Bódis and L. Mucina. 2004. On the importance of fine-scale spatial complexity in vegetation restoration. International Journal of Ecology and Environmental Sciences 30: 101–116.Google Scholar
  7. Biró, M. andZs. Molnár. 1998. A Duna-Tisza köze homokbuckásainak tájtípusai, azok kiterjedése, növényzete és tájtörténete a 18. századtól (The landscape-types of the Danube-Tisza Interfluve, their extension, vegetation and landscape history). Történeti földrajzi tanulmányok, Nyíregyháza.Google Scholar
  8. Bonet, A. and J. Pausas. 2004. Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecology 174: 257–270.Google Scholar
  9. Borhidi, A. 1995. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 39 (1–2): 97–181.Google Scholar
  10. Bornkamm, R. 1985. Vegetation changes in herbaceous communities. In: White, J. (ed.), The Population Structure of Vegetation. Dr. W. Junk, Dordrecht. pp. 89–109.Google Scholar
  11. Butaye, J., H. Jacquemyn, O. Honnay and M. Hermy. 2001. The species pool concept applied to forests in as fragmented landscape: dispersal limitation versus habitat limitation. Journal of Vegetation Science 13: 27–34.CrossRefGoogle Scholar
  12. Collins, S.L. and D.E. Adams. 1983. Succession in grasslands: Thirty-two years of change in a central Oklahoma tallgrass prairie. Vegetatio 51: 181–190.CrossRefGoogle Scholar
  13. Cowles, H.C. 1899. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Bot. Gaz. 27:95–117, 167–202, 281–308, 361–369.Google Scholar
  14. Csecserits, A. and T. Rédei. 2001. Secondary succession on sandy old-fields in Hungary. Applied Vegetation Science 4: 63–74.CrossRefGoogle Scholar
  15. Debussche, M. J. Escarré, J. Lepart, C. Houssard and S. Lavorel. 1996. Changes in Mediterranean plant succession: old-fields revisited. Journal of Vegetation Science 7:519–526.CrossRefGoogle Scholar
  16. Fekete, G. 1992. The Holistic view of succession reconsidered. Coenoses 7:21–29.Google Scholar
  17. Fischer, S., P. Poschlod and B. Beinlich. 1996. Experimental studies on the dispersal of plants and animals by sheep in calcareous grasslands. Journal of Applied Ecology 33: 1206–1222.CrossRefGoogle Scholar
  18. Foster, B. L. and D. Tilman. 2000. Dynamic and static views of succession: testing the desciptive power of the chronosequence approach. Plant Ecology 146: 1–10.CrossRefGoogle Scholar
  19. Gibson, C.W.D., T.A. Watt. andV.K. Brown. 1987. The use of sheep grazing to recreate species-rich grassland from abandoned arable land. Biological Conservation 42: 165–183.CrossRefGoogle Scholar
  20. Gitay, H. and I.R. Noble. 1997. What are functional types and how should we seek them? In: T.M. Smith, H.H. Shugart and F.L. Woolward (eds.) Plant Functional Types – Their Relevance to Ecosystem Properties and Global Change. Cambridge University Press, Cambridge, UK. pp. 3–19.Google Scholar
  21. Grime, J.P. 2001. Plant Strategies, Vegetation Processes and Ecosystem Properties. Ed. 2., John Wiley & Sons, Chichester.Google Scholar
  22. Gross, K.L. 1980. Colonization by Verbascum thapsus (mullein) of an old-field in Michigan: experiments on the effects of vegetation. Journal of Ecology 68: 919–927.CrossRefGoogle Scholar
  23. Halassy, M. 2001. Possible role of the seed bank in the resoration of open sand grassland in old fields. Community Ecology 2: 101–108.CrossRefGoogle Scholar
  24. Horváth, F., Z. K. Dobolyi, T. Morschhauser, L. Lõkös, L. Karas and T. Szerdahelyi. 1995. Flóra adatbázis (Flora database). Vácrátót.Google Scholar
  25. Hölzel, N., C. Haub, M.P. Ingelfinger, A. Otte and V. Pilipenko. 2002. The return of the steppe – large-scale restoration of degraded land in southern Russia during the post-Soviet era. J. of Nature Conservation 10: 75–85.CrossRefGoogle Scholar
  26. Inouye, R.S., N.J. Huntly, D. Tilman, J.R. Tester, M. Stillwell and K. Zinnel. 1987. Old-field succession on a Minnesota sand plain. Ecology 68:12–26.CrossRefGoogle Scholar
  27. Jackson, S.T., R.P. Futyma and D.A. Wilcox. 1988. A paleoecological test of a classical hydrosere in the Lake Michigan Dunes. Ecology 69: 928–936.CrossRefGoogle Scholar
  28. Jongepierová, I., J. Jongepier and L. Klimeš. 2004. Restoring grassland on arable land: an example of a fast spontaneous succession without weed-dominated stages. Preslia 76: 361–369.Google Scholar
  29. Jutila, H.M. and J.B. Grace. 2002. Effects of disturbance on germination and seedling establishment in a coastal prairie grassland: a test of the competitive release hypothesis. Journal of Ecology 90: 291–302.CrossRefGoogle Scholar
  30. Kovács-Láng, E., Gy. Kröel-Dulay, M. Kertész, G. Fekete, J. Mika, T. Rédei, K. Rajkai, I. Hahn and S. Bartha. 2000. Predicting the responses of sand grasslands to climate change. Phytocoenologia 30: 385–407.CrossRefGoogle Scholar
  31. Keever, C. 1979. Mechanism of plant succession on old fields of Lancaster County, Pennsylvania. Bull. Torrey Bot. Club 106: 299–308.CrossRefGoogle Scholar
  32. Lavorel, S., S. McIntre, J. Landsberg and T.D.A. Forbes. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12: 474–478.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556.CrossRefGoogle Scholar
  34. Lepš, J. 1991. Convergence or divergence: what should we expect from vegetation succession? Oikos 62: 261–264.Google Scholar
  35. MacArthur, R.H. and E.O. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  36. Margóczi, K. 1993. Comparative analysis of successional stages of sandy vegetation – a case study. Tiscia 27: 3–8.Google Scholar
  37. McIntyre, S., S. Lavorel, J. Landsberg and T.D.A. Forbes. 1999. Disturbance response in vegetation – towards a global perspective on functional traits. Journal of Vegetation Science 10: 621–630.CrossRefGoogle Scholar
  38. Molnár, Zs. and Z. Botta-Dukát. 1998. Improved space-for-time substitution for hypothesis generation: secondary grasslands with documented site history in SE-Hungary. Phytocoenologia 28: 1–29.CrossRefGoogle Scholar
  39. Muller, S., T. Dutoit, D. Alard and F. Grevilliot. 1998. Restoration and rehabilitation of species-rich grassland ecosystems in France: a review. Rest. Ecol. 6: 94–101.CrossRefGoogle Scholar
  40. Myster, R.W. and S.T.A. Pickett. 1988. Individualistic patterns of annuals and biennials in early successional oldfields. Vegetatio 78: 53–60.CrossRefGoogle Scholar
  41. Myster, R.W. and S.T.A. Pickett. 1990. Initial conditions, history and successional pathways in ten contrasting old fields. The American Middland Naturalist 124: 231–238.CrossRefGoogle Scholar
  42. Myster, R.W. and S.T.A. Pickett. 1994. A comparison of rate of succession over 18 yr. in 10 contrasting old fields. Ecology 75: 387–392.CrossRefGoogle Scholar
  43. Ne’eman, G. and I. Izhaki 1996. Colonization in abandoned East Mediterranean vineyard. Journal of Vegetation Science 7: 465–472.CrossRefGoogle Scholar
  44. Noble, I.R. and R.O. Slatyer. 1980. The use of vital attributes to predist successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.CrossRefGoogle Scholar
  45. Noble, I. and H. Gitay. 1996. A functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science 7: 329–336.CrossRefGoogle Scholar
  46. Noss, R.F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 55: 235–254.Google Scholar
  47. Olson, J.S. 1958. Rates of succession and soil changes on southern Lake Michigan sand dunes. Bot. Gaz. 119:125–170.CrossRefGoogle Scholar
  48. Osbornová, J.,M. Kovárová, J. Lepš and K. Prach (eds.). 1990. Succession in Abandoned Fields. Kluwer, Dordrecht.Google Scholar
  49. Pickett, S.T.A. 1982. Population patterns through twenty years of oldfield succession. Vegetatio 49: 45–59.CrossRefGoogle Scholar
  50. Pickett, S.T.A. 1989. Space-for-time substitution as an alternative to long-term studies. In: G. E. Likens (ed.), Long-term Studies in Ecology: Approaches and Alternatives.Springer, New York. pp. 110–135.Google Scholar
  51. Pickett, S.T.A., S.L. Collins. and J.J. Armesto. 1987. A hierarchical consideration of causes and mechanisms of succession. Vegetatio 69: 109–114.CrossRefGoogle Scholar
  52. Pickett, S.T.A., M.L. Cadenasso and S. Bartha. 2001. Implications from the Buell-Small succession study for vegetation restoration. Applied Vegetation Science 4: 41–52.CrossRefGoogle Scholar
  53. Prach, K. and P. Pyšek. 1999. How do species dominating in succession differ from others? Journal of Vegetation Science 10: 383: 392.Google Scholar
  54. Prach, K. and P. Pyšek. 2001. Using spontaneous succession for restoration of human-disturbed habitats: experience from central Europe. Ecological Engineering 17: 55–62.CrossRefGoogle Scholar
  55. Ruprecht, E. 2005. Secondary succession in old-fields in the Transylvanian Lowland (Romania). Preslia 77: 145–157.Google Scholar
  56. Ruprecht, E. 2006. Successfully recovered grassland: a promising example from Romanian old-fields. Rest. Ecology 14: 473–480.CrossRefGoogle Scholar
  57. Schmidt, W. 1998. Vegetationskundliche Langzeitforschung auf Dauerflächen – Erfahrungen und Perspektiven für den Naturschutz. Schr.-R.f. Landschaftpfl. u. Natursch. 58: 353–375.Google Scholar
  58. Sendko, A. 1999. Die Xerothermvegetation brachgefallener Rebflächen im Raum Tokaj (Nordost-Ungarn)- pflanzensoziologische und populationsbiologische Untersuchungen zur Sukzession. Phytocoenologia 29: 345–448.CrossRefGoogle Scholar
  59. Simon, T. 2000. A magyarországi edényes flóra határozója (Guide to the Hungarian Vascular Flora). Nemzeti Tankönyvkiadó, Budapest.Google Scholar
  60. Sokal, R.R. and F.J. Rohlf. 1981. Biometry. The Principles and Practice of Statistics in Biological Research. 2nd ed. W. H. Freeman and Company, New York.Google Scholar
  61. Soó, R. 1980. A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve, VI. (Handbook of the Hungarian Flora and Vegetation). Akadémiai Kiadó, Budapest.Google Scholar
  62. Szujkó-Lacza, J. and D. Kovács. 1993. The Flora of the Kiskunság National Park. Budapest.Google Scholar
  63. Tatoni, T. and P. Roche. 1994. Comparison of old-dield and forest revegetation dynamics in Provence. Journal of Vegetation Science 5: 295–302.CrossRefGoogle Scholar
  64. Török, K. and C. Lohász. 2004. The effect of climate on the restoration success of sandy grassland in Hungary. Proceedings of the 16th annual conference of the Society for Ecological Restoration. Victoria, BC, Canada. pp. 11–18.Google Scholar
  65. Török, K,. T. Szili-Kovács, Zs. Hayek, M. Halassy, T. Tóth, M.W. Paschke and L.J. Wardell 2000. Immobilization of soil nitrogen as a possible method for the restoration of sandy grassland. Applied Vegetation Science 3: 7–14.Google Scholar
  66. Van Diggelen, R., J.P. Bakker and J. Klooker. 1997. Top soil removal: new hope for threatened plant species? In: Cooper, A. and J. Power (eds.) Seed Dispersal and Land Use Processes. 6th Annual conference of the International Association for Landscape Ecology IALE, UK. pp. 257–263.Google Scholar
  67. Verhagen, E., J. Klooker, J.P. Bakker and R. Van Diggelen. 2001. Restoration success of low-production plant communities on former agricultural soils after top-soil removal. Applied Vegetation Science 4: 75–82.CrossRefGoogle Scholar
  68. Source of historical maps Google Scholar
  69. Anon. I. Military survey of Hungary 1783, sheet XV/XXVI., Military History Museum, BudapestGoogle Scholar
  70. Anon. II. Military survey of Hungary 1861–1866, sheet XXXIV/56. Military History Museum, BudapestGoogle Scholar
  71. Anon. III. Military survey of Hungary 1883, 5263/1 Military History Museum, BudapestGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Csecserits
    • 1
    Email author
  • R. Szabó
    • 1
  • M. Halassy
    • 1
  • T. Rédei
    • 1
  1. 1.Institute of Ecology and Botany of the Hungarian Academy of SciencesVácrátótHungary

Personalised recommendations