On the overlap between effect and response plant functional types linked to grazing

Abstract

The question addressed in this paper is whether plant traits and plant functional types related to forage selection by grazers are also related to those expressing short-term community response after grazing. Vegetation of natural campos grassland in south Brazil was examined for species composition and locally described for seven morphological traits before and after a controlled grazing period by bovine cattle. An optimization algorithm was used for the identification of plant functional effect types (PFefT) and plant functional response types (PFreT) - in this case, groups of plants similar in a given set of traits (assessed before and after one grazing short period, respectively) and in their association to grazing intensity. The results have shown that plant traits optimally defining plant types related to forage selection (PFefTs) were the same traits optimally defining short-term community response to grazing (PFreTs); also similar trends of plant morphological variation were observed among populations before and after grazing, based on the traits’ correlation structure. However, at the community level the correlation vanished, since similar communities described by the performances of PFefTs were not as similar when described by PFreTs. Hence, whether plant functional types related to forage selection (effect types) are also related to community response to grazing may depend on the level of organization considered. The paper advances on the operational definition of possible overlaps between effect and response plant functional types.

Abbreviations

BH:

Biomass height

GI:

Grazing intensity

LS:

Leaf surface

LT:

Leaf tensile strength

PCA:

Principal Component Analysis

PFT:

Plant functional type

PFefT:

Plant functional effect types

PFreT:

Plant functional response types

RDA:

Redundancy Analysis

SL:

Senescent leaves

UD:

Upper leafs density

VP:

Vegetative propagation structures

WB:

Woody biomass

References

  1. Altesor, A., F. Pezzani, S. Grun and C. Rodríguez. 1999. Relationship between spatial strategies and morphological attributes in Uruguayan grassland: a functional approach. J. Veg. Sci. 10: 457–462.

    Article  Google Scholar 

  2. Belski, A. J. 1992. Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. J. Veg. Sci. 3:187–200.

    Article  Google Scholar 

  3. Bergamaschi, H., M. R. Guadagnin, L. S. Cardoso and M. I. G. da Silva. 2003. Clima da Estação Experimental da UFRGS (e região de abrangência). UFRGS, Faculdade de Agronomia, Porto Alegre.

    Google Scholar 

  4. Boggiano, P. 1995. Relações entre estrutura da vegetação e pastejo seletivo de bovinos em campo natural. MSc. Dissertation, UFRGS, Faculdade de Agronomia, Porto Alegre.

    Google Scholar 

  5. Boldrini, I. L. and L. Eggers. 1997. Directionality of succession after grazing exclusion in grassland in the south of Brazil. Coenoses 12: 63–66.

    Google Scholar 

  6. Briske, D. D. 1996. Strategies of plant survival in grazed systems: a functional interpretation. In: J. Hodgson and A. W. Illius (eds.), The Ecology and Management of Grazing Systems. CAB International, Wallingford, UK, pp. 37–67.

    Google Scholar 

  7. Coughenour, M. B. 1991. Spatial components of plant-herbivore interactions in pastoral, ranching, and native ungulate ecosystems. Journal of Range Management 44: 530–541.

    Article  Google Scholar 

  8. Díaz, S., A. Acosta and M. Cabido. 1992. Morphological analysis of herbaceous communities under different grazing regimes. J. Veg. Sci. 3: 689–696.

    Article  Google Scholar 

  9. Díaz, S., M. Cabido, M. Zak, E. Martínez Carretero and J. Araníbar. 1999. Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J. Veg. Sci. 10: 651–660.

    Article  Google Scholar 

  10. Flores, E. R., F. D. Provenza and D. F. Balph. 1989. The effect of experience on the foraging skill of lambs: importance of plant form. Applied Animal Behavior Science 23: 285–291.

    Article  Google Scholar 

  11. Grime, J. P., J. E. L. Cooper and D. J. P. Tasker. 1993. Tearability. Methods in Comparative Plant Ecology. In: G. Henry and J. P. Grime, A Laboratory Manual. Chapman & Hall, London, pp. 121–123.

    Google Scholar 

  12. Jaramillo, V. J. and J. K. Detling. 1988. Grazing history, defoliation, and competition effects on shortgrass production and nitrogen accumulation. Ecology 69: 1599–1608.

    Article  Google Scholar 

  13. Laca, E. A. and M. W. Demment. 1991. Herbivory: The dilemma of foraging in a spatially heterogeneous food environment. In: R. T. Palo and C. T. Robbins (eds.), Plant Defenses against Mammalian Herbivory. CRC Press, Boca Raton, Florida, pp. 29–44.

    Google Scholar 

  14. Landsberg, J., S. Lavorel and J. Stol. 1999. Grazing response among understorey plants in arid rangelands. J. Veg. Sci. 10: 683–696.

    Article  Google Scholar 

  15. Lavorel, S. and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556.

    Article  Google Scholar 

  16. Lavorel, S., S. McIntyre and K. Grigulis. 1999. Plant response to disturbance in a Mediterranean grassland: How many functional groups? J. Veg. Sci. 10: 661–672.

    Article  Google Scholar 

  17. Legendre, P. and L. Legendre. 1998. Numerical Ecology. 2nd ed. El-sevier, Amsterdam, pp. 303–385.

    Google Scholar 

  18. Louault, F, V.D. Pillar, J. Aufrère, E. Garnier and J.-F. Soussana. 2005. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J. Veg. Sci. 16: 151–160.

    Article  Google Scholar 

  19. Moreno, J. A. 1966. Clima do Rio Grande do Sul. Secretaria da Agricultura, Porto Alegre.

    Google Scholar 

  20. Mott, G. O. and H. L. Lucas. 1952. The design conduct and interpretation of grazing trials on cultivated and improved pastures. Proceedings of the International Grassland Congress 6: 1380–1395.

    Google Scholar 

  21. O’Reagain, P. J. 1993. Plant structure and the acceptability of different grasses to sheep. Journal of Range Management 46: 232–236.

    Article  Google Scholar 

  22. O’Reagain, P. J. and M.T. Mentis. 1989. The effect of plant structure on the acceptability of different grass species to cattle. Journal of Grassland Society of Southern Africa 6: 163–169.

    Article  Google Scholar 

  23. Palmer, M. and P. S. White. 1994. On the existence of ecological communities. J. Veg. Sci. 5: 279–282.

    Article  Google Scholar 

  24. Pillar, V. D. 2005. SYNCSA, software for character-based community analysis. v. 2.2.3. UFRGS, Departamento de Ecologia, Porto Alegre.

    Google Scholar 

  25. Pillar, V. D. and L. Orlóci. 1993. Character-based Community Analysis: Theory and Application Program. SPB Academic, The Hague.

    Google Scholar 

  26. Pillar, V. D. and F. L. Quadros. 1997. Grassland-forest boundaries in southern Brazil. Coenoses 12: 119–126.

    Google Scholar 

  27. Pillar, V. D. and E. E. Sosinski-Jr. 2003. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14: 323–332.

    Article  Google Scholar 

  28. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.

    Google Scholar 

  29. Provenza, F. D. and D. F. Balph. 1987. Diet learning by domestic ruminants: theory, evidence and practical implications. Applied Animal Behavior Science 18: 211–232.

    Article  Google Scholar 

  30. Pucheta, E., M. Cabido, S. Díaz and G. Funes. 1998. Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in mountain grassland of central Argentina. Acta Oecologica 19: 97–115.

    Article  Google Scholar 

  31. Queiroz, D. S., J. A. Gomide and J. Maria. 2000. Avaliação da folha e do colmo de topo e base de perfilhos de três gramíneas for-rageiras. Revista Brasileira de Zootecnia 29: 53–60.

    Article  Google Scholar 

  32. Senft, R. L. 1989. Hierarchical foraging models: effects of stocking and landscape composition on simulated resource use by cattle. Ecological Modeling 46: 283–303.

    Article  Google Scholar 

  33. Senft, R. L., M. B. Coughenour, D. W. Bailey, L. R. Rittenhouse, O. E. Sala and D. M. Swift. 1987. Large herbivore foraging and ecological hierarchies. Bioscience 37: 789–799.

    Article  Google Scholar 

  34. Sosinski-Jr, E. E. and V. D. Pillar. 2004. Respostas de tipos funcionais de plantas à intensidade de pastejo em vegetação campestre. Pesquisa Agropecuária Brasileira 39: 1–9.

    Article  Google Scholar 

  35. Stewart, K. E. J., N. A. D. Bourn and J. A. Thomas. 2001. An evaluation of three quick methods commonly used to assess sward height in ecology. Journal of Applied Ecology 38: 1148–1154.

    Article  Google Scholar 

  36. Weiher, E. A. van der Werf, K. Thompson, M. Roderick, E. Garnier and O. Eriksson. 1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 10: 609–620.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. C. Blanco.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Blanco, C.C., Sosinski, E.E., dos Santos, B.R.C. et al. On the overlap between effect and response plant functional types linked to grazing. COMMUNITY ECOLOGY 8, 57–65 (2007). https://doi.org/10.1556/ComEc.8.2007.1.8

Download citation

Keywords

  • Campos
  • Data analysis
  • Disturbance
  • Effect traits
  • Forage selection
  • Grassland
  • Intra-specific variation
  • Response traits
  • Vegetation dynamics