Do habitat size and shape modify abiotic factors and communities in artificial treeholes?

Abstract

Community composition may be determined by a variety of factors, including habitat dimension, abiotic conditions, and biotic interactions. Habitat dimensions may influence abiotic conditions, thus modifying community structure or biotic interactions. We used six different mesocosm sizes, two depths crossed with three surface areas, to test hypotheses regarding the direct and indirect effects of habitat dimensions (depth and surface area) on dissolved oxygen concentration and insect communities in artificial water-filled treeholes. Containers were monitored for dissolved oxygen concentrations and insect community composition from June 2002 to November 2003. We predicted that deep mesocosms would have lower species richness and insect larval densities than shallow due to less dissolved oxygen at deeper depths, and that large surface area mesocosms would have greater species richness and abundance of insects than small. Larger surface area habitats may attract more insects because they are easier to find and perceived by ovipositing females to be more stable. Dissolved oxygen concentrations ([DO]) at depth were consistently lower in deep than shallow habitats, and mosquito densities and species richness were lower in those deep mesocosms compared to shallow mesocosms. We found higher insect richness at certain times of the year in large and medium than in small surface area mesocosms. By modifying abiotic factors such as [DO], dimensional aspects of the habitat, in this case depth, may affect community structure in ways not predicted simply by habitat size.

Abbreviations

AIC:

Aikake’s Information Criterion

ANOVA:

Analysis of Variance

Cmin:

Minimum Value of the Discrepancy Function

DO:

Dissolved Oxygen Concentration

MANOVA:

Multivariate Analysis of Variance

References

  1. Alto, B. W., M. W. Griswold and L. P. Lounibos. 2005. Habitat complexity and sex-dependent predation of mosquito larvae in containers. Oecologia 146: 300–310.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Armbruster, P., R.A. Hutchinson and P. Cotgreave. 2002. Factors influencing community structure in a South American tank bromeliad fauna. Oikos 96: 225–234.

    Article  Google Scholar 

  3. Bagarinao, T. 1992. Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat. Toxicol. 24: 21–62.

    Article  CAS  Google Scholar 

  4. Barrera, R. 1996. Species concurrence and the structure of a community of aquatic insects in tree holes. J. Vect. Biol. 21: 66–80.

    Google Scholar 

  5. Bazzanti, M., V. Della Bella and M. Seminara. 2003. Factors affecting macroinvertebrate communities in astatic ponds in central Italy. J. Freshw. Ecol. 18: 537–548.

    Article  CAS  Google Scholar 

  6. Beehler, J., S. Lohr and G. DeFoliart. 1992. Factors influencing oviposition in Aedes triseriatus (Diptera: Culicidae). Great Lakes Entomol. 25: 259–264.

    Google Scholar 

  7. Bradshaw, W. E., C. M. Holzapfel. 1988. Drought and the organization of treehole communities. Oecologia 74: 507–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breitburg, D. L., T. Loher, C. A. Pacey and A. Gerstein. 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monograph 67: 489–507.

    Article  Google Scholar 

  9. Cohen, J. E. and C. M. Newman. 1991. Community area and food chain length: theoretical predictions. Am. Nat. 138: 1542–1554.

    Article  Google Scholar 

  10. Connell, J. H. 1975. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In: M. L. Cody, J. Diamond (eds.), Ecology and Evolution of Communities. Harvard Univ Press, Cambridge, MA, USA, pp. 460–490.

    Google Scholar 

  11. Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.

    Article  CAS  Google Scholar 

  12. Dunson, W. A. and J. Travis. 1991. The role of abiotic factors in community organization. Am. Nat. 138: 1067–1091.

    Article  Google Scholar 

  13. Eriksen, C. H., G. A. Lamberti and V. H. Resh. 1996. Aquatic insect respiration. In: R. W. Merritt, K. W. Cummins (eds.), An Introduction to the Aquatic Insects of North America, 3rd edn. Kendall/Hunt, Dubuque, IA, pp. 29–40.

  14. Fincke, O. M., S. P. Yanoviak and R. D. Hanschu. 1997. Predation by odonates depresses mosquito abundance in water filled tree-holes in Panama. Oecologia 112: 244–253.

    Article  Google Scholar 

  15. Fretwell, S. D. 1987. Food chain dynamics: the central theory of ecology?. Oikos 50: 291–301.

    Article  Google Scholar 

  16. Hampton, S. E. 2004. Habitat overlap of enemies: temporal patterns and the role of spatial complexity. Oecologia 138: 475–484.

    Article  Google Scholar 

  17. Hard, J. J., W. E. Bradshaw and D. J. Malarkey. 1989. Resource- and density-dependent development in treehole mosquitoes. Oikos 54: 137–144.

    Article  Google Scholar 

  18. Hechtel, L. J. and S. A. Juliano. 1997. Effects of a predator on prey metamorphosis: plastic responses by prey or selective mortality?. Ecology 78: 838–851.

    Article  Google Scholar 

  19. Hondzo, M. and H. G. Stefan. 1993. Lake water temperature simulation model. J. Hyd. Div. 119: 1251–1273.

    Article  Google Scholar 

  20. Hunter, M. D. and P. W. Price. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73: 724–732.

    Google Scholar 

  21. Jackson, D. A., P. R. Peres-Neto and J. D. Olden. 2001. What controls who is where in freshwater fish communities: the roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci. 58: 157–170.

    Google Scholar 

  22. Kalff, J. 2001. Limnology: Inland Water Systems. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  23. Kitching, R. L. 1987. Spatial and temporal variation in food webs in water-filled treeholes. Oikos 48: 280–288.

    Article  Google Scholar 

  24. Kitching, R. L. and R. A. Beaver. 1990. Patchiness and community structure. In B. Shorrocks, I. R. Swingland (eds.), Living in a Patchy Environment. Oxford Univ. Press, Oxford, pp. 147–176.

    Google Scholar 

  25. Kitching, R. L. 2000. Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata. Cambridge Univ. Press, Cambridge, UK.

    Book  Google Scholar 

  26. Kneitel, J. M. and J. Chase. 2004. Disturbance, predator, and resource interactions alter container community composition. Ecology 85: 2088–2093.

    Article  Google Scholar 

  27. Kneitel, J. M. and T. E. Miller. 2002. Resource and top-predator regulation in the pitcher plant (Sarracenia purpurea) inquiline community. Ecology 83: 680–688.

    Article  Google Scholar 

  28. Kruger, E. L., L. G. Pappas and C. D. Pappas. 1990. Habitat and temporal partitioning of tree hole Culicoides (Diptera: Cera-topogonidae). J. Am. Mosq. Control Assoc. 6: 390–393.

    CAS  PubMed  Google Scholar 

  29. Lester, P. J. and A. J. Pike. 2003. Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. J. Vector Ecol. 28: 267–274.

    PubMed  Google Scholar 

  30. Livdahl, T. P. 1982. Competition within and between hatching cohorts of a treehole mosquito. Ecology 63: 1751–60.

    Article  Google Scholar 

  31. Lomans, B. P., A. Pol and H. J. M. Op den Camp. 2002. Microbial cycling of volatile organic sulfur compounds in anoxic environments. Water Sci. Tech. 45: 55–60.

    Article  CAS  Google Scholar 

  32. MacArthur, R. H. and E. O. Wilson. 1967. Theory of Island Biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  33. Maguire, B. Jr. 1971. Phytotelmata: biota and community structure determination in plant-held waters. Annu. Rev. Ecol. Syst. 2: 439–464.

    Article  Google Scholar 

  34. Markarian, R. K. 1980. A study of the relationship between aquatic insect growth and water temperature in a small stream. Hydrobiologia 75: 81–95.

    Article  Google Scholar 

  35. Mitchell, R. J. 1992. Testing evolutionary and ecological hypotheses using path analysis and structural equation modeling. Funct. Ecol. 6: 123–129.

    Article  Google Scholar 

  36. Moore, M. K. and V. R. Townsend. 1998. The interaction of temperature, dissolved oxygen and predation pressure in an aquatic predator-prey system. Oikos 81: 329–336.

    Article  Google Scholar 

  37. Paing, J., B. Picot and J. P. Sambuco. 2003. Emission of H2S and mass balance of sulfur in anaerobic ponds. Water Sci. Tech. 48: 227–234.

    Article  CAS  Google Scholar 

  38. Paradise, C. J. 1997. Abiotic and biotic factors controlling the structure of insect treehole communities. Ph.D. Thesis, The Pennsylvania State University, State College, PA.

    Google Scholar 

  39. Paradise, C. J. 1998. Colonization and development of insects in simulated treehole habitats with distinct resource and pH regimes. Ecoscience 5: 39–45.

    Article  Google Scholar 

  40. Paradise, C. J. 2004. Relationship of water and leaf litter variability to insects inhabiting treeholes. J. North Am. Benthol. Soc. 23: 793–805.

    Article  Google Scholar 

  41. Paradise, C. J. and W. A. Dunson. 1997. Insect species interactions and resource effects in treeholes: are helodid beetles bottom-up facilitators of midge populations?. Oecologia 109: 303–312.

    Article  CAS  Google Scholar 

  42. Petersen, J. E., J. C. Cornwell and M. Kemp. 1999. Implicit scaling in the design of experimental aquatic ecosystems. Oikos 85: 3–18.

    Article  Google Scholar 

  43. Petersen, J. E. and A. Hastings. 2001. Dimensional approaches to scaling experimental ecosystems: designing mousetraps to catch elephants. Am. Nat. 157: 324–333.

    Article  CAS  Google Scholar 

  44. Pimm, S. L. and R. L. Kitching. 1987. The determinants of food chain lengths. Oikos 50: 302–307.

    Article  Google Scholar 

  45. Post, D. M., M. L. Pace and N. G. Hairston, Jr. 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.

    Article  CAS  Google Scholar 

  46. Robb, T. and M. V. Abrahams. 2002. The influence of hypoxia on risk of predation and habitat choice by the fathead minnow, Pimephales promelas. Behav. Ecol. Sociobiol. 52: 25–30.

    Article  Google Scholar 

  47. Schladow, S. G., M. Lee, B. E. Herzeler and P. B. Kelly. 2002. Oxygen transfer across the air-water interface by natural convection in lakes. Limnol. Oceanogr. 47: 1394–1404.

    Article  CAS  Google Scholar 

  48. Schoener, T. W. 1974. Resource partitioning in ecological communities. Science 185:27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schoener, T. W. 1989. Food webs from the small to the large. Ecology 70: 1559–1589.

    Article  Google Scholar 

  50. Smith, L. L. Jr., D. M. Oseid, I. R. Adelman and S. J. Broderius. 1976. Effect of Hydrogen Sulfide on Fish and Invertebrates. Part I: Acute and Chronic Toxicity Studies. Technical report of the EPA, USEPA Res Lab 600/3/76–062a.

  51. Sota, T. 1996. Effects of capacity on resource input and the aquatic metazoan community structure in phytotelmata. Researches Pop. Ecol. 38: 65–73.

    Article  Google Scholar 

  52. Sota, T. 1998. Microhabitat size distribution affects local difference in community structure: metazoan communities in treeholes. Researches Pop. Ecol. 40: 249–255.

    Article  Google Scholar 

  53. Sota, T., M. Mogi and E. Hayamizu. 1994. Habitat stability and the larval mosquito community in treeholes and other containers on a temperate island. Researches Pop. Ecol. 36: 93–104.

    Article  Google Scholar 

  54. Srivastava, D. S. and J. H. Lawton. 1998. Why more productive sites have more species: experimental test of theory using tree-hole communities. Am. Nat. 152: 510–529.

    Article  CAS  Google Scholar 

  55. Toprak, H. 1997. Hydrogen sulphide emission rates originating from anaerobic waste stabilization ponds. Environ. Tech. 18: 795–805.

    Article  CAS  Google Scholar 

  56. Van der Zanden, M. J., B. J. Shuter, N. Lester and J. Rasmussen. 1999. Patterns of food chain length in lakes: a stable isotope study. Am. Nat. 154: 406–416.

    Article  Google Scholar 

  57. Vetter, R. D., M. A. Powell and G. N. Somero. 1991. Metazoan adaptations to hydrogen sulphide. In: C. Bryant (ed.), Metazoan Life Without Oxygen. Chapman and Hall, London, pp. 109–128.

    Google Scholar 

  58. von Ende, C. 2001. Repeated-measures analysis: growth and other time-dependent measures. In: S. M. Scheiner and J. Gurevitch (eds.) Design and Analysis of Ecological Experiments. Oxford Univ. Press, Oxford, pp. 134–157.

    Google Scholar 

  59. Walker, E. D., D. L. Lawson, R. W. Merritt, W. T. Morgan and M. J. Klug. 1991. Nutrient dynamics, bacterial populations, and mosquito productivity in treehole ecosystems and microcosms. Ecology 72: 1529–46.

    Article  Google Scholar 

  60. Wilton, D. P. (1968) Oviposition site selection by the tree-hole mosquito, Aedes triseriatus (Say). J. Med. Entomol. 5: 189–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wright, D. H. 1983. Species-energy theory: an extension of species-area theory. Oikos 41: 496–506.

    Article  Google Scholar 

  62. Yanoviak, S. P. 1999. Effects of leaf litter species on macroinvertebrate community properties and mosquito yield in Neotropical treehole microcosms. Oecologia 120: 147–155.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yanoviak, S. P. 2001. Predation, resource availability, and community structure in Neotropical water-filled treeholes. Oecologia 126: 125–133.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. J. Paradise.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Harlan, N.P., Paradise, C.J. Do habitat size and shape modify abiotic factors and communities in artificial treeholes?. COMMUNITY ECOLOGY 7, 211–222 (2006). https://doi.org/10.1556/ComEc.7.2006.2.8

Download citation

Keywords

  • Culicoides guttipennis
  • Dissolved oxygen
  • Mesocosm experiment
  • Mosquito
  • Ochlerotatus triseriatus
  • Species richness