Architectural classes of aquatic food webs based on link distribution

Abstract

Link distribution is an important architectural feature of ecological networks, since it is thought to influence community dynamics. Several attempts have been made in order to characterize the typical link distribution of food webs, but the number of webs studied thus far is low and their quality is unbalanced. Comparability is a rarely asked methodological question, and as far as we see only two data bases are available which allow reliable comparison of food webs: one for terrestrial, high resolution, host-parasitoid webs and another for highly aggregated, marine trophic networks. We present an analysis of a set of food webs belonging to the latter type, since the host-parasitoid networks are only subgraphs and therefore uninformative on the structure of the entire community. We address the following three questions: (1) how to characterize the link distribution of these small networks which cannot always be fitted statistically to well-known distributions (such as the exponential or the Poisson, etc.), (2) are these distributions of more or less similar shape or they belong to different „architectural classes”, and (3) if there are different classes, then what are their distinctive topological and biological properties. We suggest that link distribution of such small networks can be compared to each other by principal coordinates ordination and clustering. We conclude that (1) the webs can be categorized into two different classes, and (2) one of the classes contains significantly larger and topologically more heterogeneous webs for which net output of material is also of higher variance. We emphasize that link distribution is an interesting and important property not only in case of complex, speciose food webs, but also in highly aggregated, low-resolution webs.

Abbreviations

DOC:

Dissolved Organic Carbon

NO CV:

Coefficient of Variation of Net Output Values

PCA:

Principal Components Analysis

PCoA:

Principal Coordinates Analysis

POC:

Particulate Organic Carbon

References

  1. Baird, D. and Ulanowicz, R. E. 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecological Monographs 59:329–364.

    Google Scholar 

  2. Baird, D., McGlade, J. M. and Ulanowicz, R. E. 1991. The comparative ecology of six marine ecosystems. Philosophical Transactions of the Royal Society, London, series B 333:15–29.

    Google Scholar 

  3. Baird, D. and Ulanowicz, R. E. 1993. Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Marine Ecology Progress Series 99:221–237.

    Google Scholar 

  4. Baird, D., Ulanowicz, R. E. and Boynton, W. R. 1995. Seasonal nitrogen dynamics in Chesapeake Bay: a network approach. Estuarine, Coastal and Shelf Science 41:137–162.

    CAS  Google Scholar 

  5. Briand, F. 1983. Environmental control of food web structure. Ecology 64: 253–263.

    Google Scholar 

  6. Buckley, H. L., Miller, T. E., Ellison, A. M. and Gotelli, N. J. 2003. Reverese latitudinal trends in species richness of pitcher-plant food webs. Ecology Letters 6: 825–829.

    Google Scholar 

  7. Carrer, S. and Opitz, S. 1999. Trophic network model of a shallow water area in the northern part of the Lagoon of Venice. Ecological Modelling 124:193–219.

    Google Scholar 

  8. Christensen, V. 1995. Ecosystem maturity – towards quantification. Ecological Modelling 77:3–32.

    Google Scholar 

  9. Christensen, V. and Pauly, D. 1992. ECOPATH II – a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61:169–185.

    Google Scholar 

  10. Christensen, V. and Pauly, D. (eds.) 1993. Trophic Models of Aquatic Ecosystems. ICLARM Conf. Proc. 26, 390 p.

    Google Scholar 

  11. Christian, R. R. and Luczkovich J. J. 1999. Organising and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecological Modelling 117:99–124.

    Google Scholar 

  12. Cohen, J. E. 1978. Food Webs and Niche Space. Princeton Univ. Press, Princeton.

    Google Scholar 

  13. Cohen, J. E., Briand, F. and Newman, C. M. 1990. Community Food Webs: Data and Theory. Springer Verlag, Berlin.

    Google Scholar 

  14. Cohen, J. E., Beaver, R. A., Cousins, S. H., De Angelis, D. L., Goldwasser, L., Heong, K. L., Holt, R. D., Kohn, A. J., Lawton, J. H., Martinez, N. D., O’Malley, R., Page, L. M., Patten, B. C., Pimm, S. L., Polis, G. A., Rejmánek, M., Schoener, T. W., Schoenly, K., Sprules, W. G., Teal, J. M., Ulanowicz, R. E., Warren, P. H., Wilbur, H. M. and Yodzis, P. 1993. Improving food webs. Ecology 74:252–258.

    Google Scholar 

  15. De Ruiter, P. C. et al. 1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269: 1257–1260.

    PubMed  Google Scholar 

  16. Dunne, J. A., Williams, R. J. and Martinez, N. D. 2002 Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters 5:558–567.

    Google Scholar 

  17. Goldwasser,L. and Roughgarden, J. 1993. Construction and analysis of a large Caribbean food web. Ecology 74:1216–1233.

    Google Scholar 

  18. Herbst, D. B. 2001. Salinity-dependent changes in the organization of aquatic food webs in salt evaporation ponds in the Mojave Desert. ESA Annual Meeting, Abstract Volume, #0709.

    Google Scholar 

  19. Heymans,J. J. and Baird, D. 2000. A carbon flow model and network analysis of the northern Benguela upwelling system, Namibia. Ecological Modelling 126:9–32.

    CAS  Google Scholar 

  20. Jávor, B., Jordán, F. and Török, J. 2005. A comparative sink web analysis of two birds in two habitats: trophic structure, functionality, aggregation and system-level indication. Community Ecology 6:13–22.

    Google Scholar 

  21. Jordán, F. 2003. On the functional trophic height of whiting. Ecological Indicators 3:223–225.

    Google Scholar 

  22. Jordán, F., Scheuring, I. and Vida, G. 2002. Species positions and extinction dynamics in simple food webs. Journal of Theoretical Biology 215:441–448.

    PubMed  Google Scholar 

  23. Jordán, F. and Scheuring, I. 2002. Searching for keystones in ecological networks. Oikos 99:607–612.

    Google Scholar 

  24. Jordán, F., Scheuring, I. and Molnár, I. 2003. Persistence and flow reliability in simple food webs. Ecological Modelling 161:117–124.

    Google Scholar 

  25. Kitching, R. L. 2000. Food Webs and Container Habitats. Cambridge University Press, Cambridge.

    Google Scholar 

  26. Lionard, M., Muylaert, K., Van Gansbeke, D. and Vyverman, W. 2005. Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde river and estuary (Belgium/The Netherlands). Hydrobiologia 540: 105–115.

    Google Scholar 

  27. Martinez, N. D. 1991. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs 61: 367–392.

    Google Scholar 

  28. Montoya, J. M. and Solé, R. V. 2002. Small world patterns in food webs. Journal of Theoretical Biology 214:405–412.

    PubMed  Google Scholar 

  29. Müller, C. B., Adriaanse, I. C. T., Belshaw, R. and Godfray, H. C. J. 1999. The structure of an aphid-parasitoid community. J. Anim. Ecol. 68: 346–370.

    Google Scholar 

  30. Newman, M. E. J. 2003. Ego-centered networks and the ripple effect. Social Networks 25: 83–95.

    Google Scholar 

  31. Ortiz, M. and Wolff, M. 2002. Dynamical simulation of mass-balance trophic models for benthic communities of north-central Chile: assessment of resilience time under alternative management scenarios. Ecological Modelling 148:277–291.

    Google Scholar 

  32. Pauly, D., Christensen, V. and Walters, C. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57:697–706.

    Google Scholar 

  33. Pedros-Alio, C., Calderon-Paz, J. I., MacLean, M. H., Medina, G., Marrase, C., Gasol, J. M. and Guixa-Boixereu, N. 2000. The microbial food web along salinity gradients. FEMS Microbiol. Ecology 32: 143–155.

    CAS  Google Scholar 

  34. Podani, J. 2001. SYN-TAX 2000. User’s Manual. Scientia, Budapest.

    Google Scholar 

  35. Polis, G. A. 1991. Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist 138: 123–155.

    Google Scholar 

  36. Rosado-Solórzano, R. and Guzmán del Próo, S. A. 1998. Preliminary trophic structure model for Tampamachoco lagoon, Veracruz, Mexico. Ecological Modelling 109:141–154.

    Google Scholar 

  37. Solé, R. V. and Montoya, J. M. 2001. Complexity and fragility in ecological networks. Proc. Roy. Soc. L. B 268: 2039–2045.

    Google Scholar 

  38. Steneck, R. S. and Dethier, M. N. 1994. A functional group approach to the structure of algal- dominated communities. Oikos 69: 476–498.

    Google Scholar 

  39. Strogatz, S. H. 2001. Exploring complex networks. Nature 410: 268–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ulanowicz, R. E. 1996. Trophic flow networks as indicators of ecosystem stress. In: Polis, G. A. and Winemiller, K. O. (eds.) Food Webs: Integration of Patterns and Dynamics. Chapman and Hall, London. pp. 358–368.

    Google Scholar 

  41. Ulanowicz, R. E. and Baird, D. 1999. Nutrient controls on ecosystem dynamics: the Chesapeake mesohaline community. Journal of Marine Systems 19:159–172.

    Google Scholar 

  42. Vega-Cendejas, M. E. and Arreguín-Sánchez, F. 2001. Energy fluxes in a mangrove ecosystem from a coastal lagoon in Yucatan Peninsula, Mexico. Ecological Modelling 137:119–133.

    Google Scholar 

  43. Walters, C. J., Christensen, V. and Pauly, D. 1997. Structuring dynamic models of exploited ecosystems from trophic mass balance assessments. Reviews in Fish Biology and Fisheries 7:139–172.

    Google Scholar 

  44. Williams, R. J., Berlow, E. L., Dunne, J. A., Barabási, A.-L. and Martinez, N. D. 2002. Two degrees of separation in complex food webs. Proc. Natl. Acad. Sci. USA 99: 12913–12916.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Jordán.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Jordán, F., Scheuring, I., Vasas, V. et al. Architectural classes of aquatic food webs based on link distribution. COMMUNITY ECOLOGY 7, 81–90 (2006). https://doi.org/10.1556/ComEc.7.2006.1.8

Download citation

Keywords

  • Aquatic ecosystems
  • Classification
  • Food web
  • Link distribution
  • Network
  • Ordination