Validation of phytosociological classifications based on a fuzzy set approach

Abstract

We propose a simple method to validate vegetation types in phytosociological tables obtained with the Braun-Blanquet approach. The method is based on fuzzy set theory and it measures the sharpness of a classification of relevés based on degrees of belonging calculated by similarity functions. The idea animating this work is that the validated vegetation types offer non-random species combinations that can be used to model environmental changes taking biodiversity into account. Phytosociological tables are widely available today and the information they contain can be very useful in studying environmental changes at different scales, from local to global.

References

  1. Anand, M. and L. Orlóci. 1997. Chaotic dynamics in a multispecies community. Environmental and Ecological Statistics 4:337–344.

    Article  Google Scholar 

  2. Andreucci, F., E. Biondi, E. Feoli and V. Zuccarello. 2000. Modeling environmental responses of plant associations by fuzzy set theory. Community Ecology 1:73–80.

    Google Scholar 

  3. Austin, M.P. 1985. Continuum concept, ordination methods, and niche theory. Ann. Rev. Ecol. Syst. 16:39–61.

    Google Scholar 

  4. Austin, M.P. 2004. Vegetation and environment: discontinuities and continuities. In: E. van der Maarel (ed.), Vegetation Ecology. Blackwell, Oxford. pp. 52–84.

    Google Scholar 

  5. Austin, M.P. and T.M. Smith. 1989. A new model for the continuum concept. Vegetatio 83:35–47.

    Google Scholar 

  6. Biondi, E., E. Feoli and V. Zuccarello. 2004. Modelling environmental responses of plant associations: a review of some critical concepts in vegetation study. Critical Review in Plant Sciences 23:149–156.

    Google Scholar 

  7. Blasi, C., M.L. Carranza., R. Frondoni and L. Rosati. 2000. Ecosystem classification and mapping for Italian landscapes. Appl. Veg. Sci. 3:233–242.

    Google Scholar 

  8. Braun-Blanquet, J. 1964. Pflanzensoziologie.Grundzüge der Vegetationskunde. Ed. 3. Springer Verlag, Wien. pp. 865.

    Google Scholar 

  9. Burnaby, T.P. 1970. On a method for character weighting a similarity coefficient, employing the concept of information. J. Int. Ass. Math. Geol. 2:25–38.

    Google Scholar 

  10. Carranza, L., E. Feoli and P. Ganis. 1998. Analysis of vegetation structural diversity by Burnaby’s similarity index. Plant Ecology 138:77–87.

    Google Scholar 

  11. Cox, E. 1994. The Fuzzy Systems Handbook. Academic Press Inc., London.

    Google Scholar 

  12. Dale, M. 1988. Mutational and non-mutational similarity measures: a preliminary examination. Coenoses 3:121–133.

    Google Scholar 

  13. Dale, M.B. 1994. Do ecological communities exist? J. Veg. Sci. 5:285–286.

    Google Scholar 

  14. Feoli, E. 1984. Some aspects of classification and ordination of vegetation data in perspective. Studia Geobotanica 4:7–21.

    Google Scholar 

  15. Feoli, E. and M. Lagonegro. 1983. A resemblance function based on probability: Applications to field and simulated data. Vegetatio 53:3–9.

    Google Scholar 

  16. Feoli, E. and L. Orlóci. 1979. Analysis of concentration and detection of underlying factors in structured tables. Vegetatio 40:49–54.

    Google Scholar 

  17. Feoli, E. and L. Orlóci. (eds). 1991. Computer Assisted Vegetation Analysis. Kluwer, Dordrecht.

    Google Scholar 

  18. Feoli, E. and V. Zuccarello. 1986. Ordination based on classification: yet another solution? Abstracta Botanica 10:203–219.

    Google Scholar 

  19. Ferro G., F. Lucchese and B. Scammacca. 1997. Studio fitosociologico sulla vegetazione segetale del Molise (Italia centrale). Studia Bot. 16:91–133.

    Google Scholar 

  20. Hannah, L., G.F. Midgley and D. Millar. 2002. Climate change-integrated conservation strategies. Global Ecology and Biogeography 11:485–495.

    Google Scholar 

  21. Goodall, D.W. 1964. A probabilistic similarity index. Nature 203:1098.

    Google Scholar 

  22. Goodall, D.W. 1966. A new similarity index based on probability. Biometrics 22:882–907.

    Google Scholar 

  23. Goodall, D.W. 1993. Probabilistic indices for classification - Some extensions. Abstracta Botanica 17:125–132.

    Google Scholar 

  24. Goodall, D.W. and E. Feoli. 1988. Application of probabilistic methods in the analysis of phytosociological data. Coenoses 3:1–12.

    Google Scholar 

  25. Goodall, D.W., P. Ganis and E. Feoli. 1987. Probabilistic methods in classification: a manual for seven computer programs. GEADQ 7, Universita’ degli Studi di Trieste, pp. 50.

    Google Scholar 

  26. Goodall, D.W., P. Ganis and E. Feoli. 1991. Probabilistic methods in classification: a manual for seven computer programs. In: Feoli, E. and L. Orlóci. (eds). Computer Assisted Vegetation Analysis. Kluwer, Dordrecht, pp. 453–467.

    Google Scholar 

  27. Jongman, R.H.G., C.J.F. ter Braak and O.F.R. van Tongeren. 1995. Data Analysis in Community and Landscape Ecology. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  28. Küchler, A.W. and I.S. Zonneveld (eds). 1988. Vegetation Mapping. Kluwer, Dordrecht.

    Google Scholar 

  29. Legendre, P. and L. Legendre. 1998. Numerical Ecology. Second English edition. Elsevier, Amsterdam.

    Google Scholar 

  30. Mirkin, B.M. 1987. Paradigm change and vegetation classification in Soviet phytocoenology. Vegetatio 68:131–138.

    Google Scholar 

  31. Mirkin, B.M. 1994. Which plant communities do exist? J. Veg. Sci. 5:283–284.

    Google Scholar 

  32. Mucina, L. 1997. Classification of vegetation: past present and future. J. Veg. Sci. 8:751–760.

    Google Scholar 

  33. Mucina, L. and M.B. Dale (eds). 1989. Numerical Syntaxonomy. Kluwer, Dordrecht.

    Google Scholar 

  34. Mucina, L. and E. van der Maarel. 1989. Twenty years of numerical syntaxonomy. Vegetatio 81:1–15.

    Google Scholar 

  35. Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and methods of vegetation ecology. J. Wiley, New York.

    Google Scholar 

  36. Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. Dr. W. Junk, The Hague.

    Google Scholar 

  37. Orlóci, L. 2001a. Pattern dynamics: an essay concerning principles, techniques, and applications. Community Ecology 2:1–15.

    Google Scholar 

  38. Orlóci, L. 2001b. Prospects and expectations: reflections on a science in change. Community Ecology 2:187–196.

    Google Scholar 

  39. Orlóci, L., M. Anand and V.D. Pillar. 2002a. Biodiversity analysis: issues, concepts, techniques. Community Ecology 3:217–236.

    Google Scholar 

  40. Orlóci, L., V.D. Pillar, M. Anand and H. Behling. 2002b. Some interesting characteristics of the vegetation process. Community Ecology 3:125–146.

    Google Scholar 

  41. Palmer, M.W. and P.S. White. 1994. On the existence of ecological communities. J. Veg. Sci. 5:279–282.

    Google Scholar 

  42. Pausas, J.C. and E. Feoli. 1996. Environment-vegetation relationships in the understorey of Pyrenean Pinus sylvestris forest. II. A classification approach. Coenoses 11:45–51.

    Google Scholar 

  43. Pignatti, S. 1990. Towards a prodrome of plant communities. J. Veg. Sci. 1:425–426.

    Google Scholar 

  44. Pillar, V.D. 1999. How sharp are classifications? Ecology 80:2508–2516.

    Google Scholar 

  45. Pillar, V.D. and L. Orlóci. 1996. On randomization testing in vegetation science: multifactor comparisons of relevé groups. J. Veg. Sci. 7:585–592.

    Google Scholar 

  46. Podani, J. 1995. Multivariate Data Analysis in Ecology and Systematics. A Methodological Guide to the SYN-TAX 5.0 package. SPB Academic Publishing bv., The Hague.

    Google Scholar 

  47. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.

    Google Scholar 

  48. Podani, J. 2005. Multivariate exploratory analysis of ordinal data in ecology: Pitfalls, problems and solutions. J. Veg. Sci. 16:497–510.

    Google Scholar 

  49. Rivas-Martínez, S., F. Fernandez-Gonzalez, J. Loidi, M. Lousa and A. Penas. 2001. Syntaxonomical check list of vascular plant communities of Spain and Portugal to association level. Itin. Geob. 14:5–341.

    Google Scholar 

  50. Rivas-Martínez, S., F. Fernandez-Gonzalez, J. Loidi, M. Lousa and A. Penas. 2002. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical check list of 2001. Itin. Geob. 15:5–922.

    Google Scholar 

  51. Roberts, D.W. 1986. Ordination on the basis of fuzzy set theory. Vegetatio 66:123–131.

    Google Scholar 

  52. Rodwell, J.S., S. Pignatti, L. Mucina and J.H.J. Schaminée. 1995. European vegetation survey: update on progress. J. Veg. Sci. 6:579–662.

    Google Scholar 

  53. Roy, K., J.W. Valentine, D. Jablonski and S.M. Kidwell. 1996. Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends in Ecology and Evolution 11:458–463.

    CAS  PubMed  Google Scholar 

  54. Sneath, P.H.A. and R.R. Sokal. 1973. Numerical Taxonomy. W.H.Freeman and Company, San Francisco.

    Google Scholar 

  55. Solomeshch, A.I and B.M. Mirkin. 1999. The innovation period of vegetation classification in the former USSR: a complement to the paper by L. Mucina. J .Veg. Sci. 10:295–296.

    Google Scholar 

  56. Stafford, T.W., H.A. Semkem, R.W Graham, W.F. Klippel, A. Markova, N.G. Smirnov and J. Souton. 1999. First accelerator mass spectrometry 14C dates documenting contemporaneity of nonanalog species in late Pleistocene mammal communities. Geology 27:903–906.

    Google Scholar 

  57. Tobisch, T. and Standovár T. 2005. A comparison of vegetation patterns in the tree and herbs layers of a hardwood forest. Community Ecology 6:29–37.

    Google Scholar 

  58. van der Maarel, E. 1975. The Braun-Blanquet approach in perspective. Vegetatio 30:213–219.

    Google Scholar 

  59. van der Maarel, E. 1981. Some perspectives of numerical methods in syntaxonomy. In: H. Dierschke (ed.) Syntaxonomie. J. Cramer, Vaduz, pp 77–93.

    Google Scholar 

  60. van der Maarel, E. (ed). 2004. Vegetation Ecology. Blackwell Publishers, Oxford.

    Google Scholar 

  61. Wallace, C.S. and M.B. Dale. 2005. Hierarchical clusters of vegetation types. Community Ecology 6:57–74.

    Google Scholar 

  62. Westhoff, V. and E. van der Maarel. 1978. The Braun-Blanquet approach. In: R.H. Whittaker (ed.), Classification of Plant Communities. 2nd ed. Junk, The Hague. pp. 287–399.

    Google Scholar 

  63. Wilson, J.B. 1994. Who makes the assembly rules? J. Veg. Sci. 5:275–278.

    Google Scholar 

  64. Wilson, J.B., R.K. Peet and M.T. Sykes. 1995. What constitutes evidence of community structure? A reply to van der Maarel, Noest and Palmer. J. Veg. Sci. 6:753–758.

    Google Scholar 

  65. Zimmerman, H. 1996. Fuzzy Set Theory and its Applications. 3rd ed.. Kluwer, Dordrecht.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Feoli.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Feoli, E., Ferro, G. & Ganis, P. Validation of phytosociological classifications based on a fuzzy set approach. COMMUNITY ECOLOGY 7, 99–108 (2006). https://doi.org/10.1556/ComEc.7.2006.1.10

Download citation

Keywords

  • Fuzzy sets
  • Similarity
  • Syntaxonomy
  • Vegetation types