On parametric diversity indices in ecology: A historical note

References

  1. Aczél, J. and Daróczy, Z. 1975. On Measures of Information and their Characterizations. Academic Press, London.

    Google Scholar 

  2. Baczkowski, A., Joanes D.N. and Shamia, G. 2000. The distribution of a generalized diversity index due to Good. Environ. Ecol. Stat. 7: 329–342.

    Article  Google Scholar 

  3. Colwell, R.K. 1979. Toward an unified approach to the study of species diversity. In: Grassle, J.F., Patil, G.P., Smith, W. and Taillie, C. (eds.), Ecological Diversity in Theory and Practice. International Cooperative Publishing House, Fairland, Maryland. pp. 75–91.

    Google Scholar 

  4. Grassle J.F., Patil, G.P., Smith, W. and Taillie, C. (ed.). 1979. Ecological Diversity in Theory and Practice. International Cooperative Publishing House, Fairland, Maryland.

    Google Scholar 

  5. Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–431.

    Article  Google Scholar 

  6. Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.

    Article  Google Scholar 

  7. Keylock, C.J. 2005. Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy. Oikos 109: 203–207.

    Article  Google Scholar 

  8. Molinari, J. 1989. A calibrated index for the measurement of evenness. Oikos 56: 319–326.

    Article  Google Scholar 

  9. Patil, G.P. and Taillie, C. 1979. An overview of diversity. In: Grassle, J.F., Patil, G.P., Smith, W. and Taillie, C. (eds.), Ecological Diversity in Theory and Practice. International Cooperative Publishing House, Fairland, Maryland, pp. 3–27.

    Google Scholar 

  10. Patil, G.P. and Taillie, C. 1982. Diversity as a concept and its measurement. J. Am. Stat. Ass. 77: 548–567.

    Article  Google Scholar 

  11. Pielou, E.C. 1980. Review on Grassle et al. (1979). Biometrics 36: 742–743.

    Article  Google Scholar 

  12. Podani,J. 1992. Space series analysis: processes reconsidered.Abstr. Bot. 16: 25–29.

    Google Scholar 

  13. Rényi, A. 1961. On measures of entropy and information. In: Neyman, J. (ed.), Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. I. University of California Press, Berkeley, pp. 547–561.

    Google Scholar 

  14. Rényi, A. 1970. Probability Theory. North-Holland, Amsterdam.

    Google Scholar 

  15. Ricotta, C. 2000. From theoretical ecology to statistical physics and back: self-similar landscape metrics as a synthesis of ecological diversity and geometrical complexity. Ecol. Model. 125: 245–253.

    Article  Google Scholar 

  16. Ricotta, C. 2003. Additive partition of parametric information and its associated _-diversity measure. Acta Biotheor. 51: 91–100.

    Article  Google Scholar 

  17. Ricotta, C. 2004. A parametric diversity measure combining the relative abundances and taxonomic distinctiveness of species. Divers. Distrib. 10: 143–146.

    Article  Google Scholar 

  18. Ricotta, C. 2005. Through the jungle of biological diversity. Acta Biotheor. 53: 29–38.

    Article  Google Scholar 

  19. Southwood, T.R.E. and Henderson, P.A. 2000. Ecological Methods, 3rd ed. Blackwell Science, Oxford.

    Google Scholar 

  20. Sugihara, G. 1982. Comment to Patil and Taillie (1982). J. Am. Stat. Ass. 77: 564–565.

    Google Scholar 

  21. Tóthmérész, B. 1993. DivOrd 1.50: A program for diversity ordering. Tiscia 27: 33–44.

    Google Scholar 

  22. Tóthmérész, B. 1994. Statistical analysis of spatial pattern in plant communities. Coenoses 9: 33–41.

    Google Scholar 

  23. Tóthmérész, B. 1995. Comparison of different methods for diversity ordering. J. Veg. Sci. 6: 283–290.

    Article  Google Scholar 

  24. Tóthmérész, B. 1998. On the characterization of scale-dependent diversity. Abstr. Bot. 22: 149–156.

    Google Scholar 

  25. Tsallis, C. 1988. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52: 479–487.

    Article  Google Scholar 

  26. Tsallis, C. 2002. Entropic nonextensivity: a possible measure of complexity. Chaos, Solitons and Fractals 13: 371–391.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Ricotta.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Ricotta, C. On parametric diversity indices in ecology: A historical note. COMMUNITY ECOLOGY 6, 241–244 (2005). https://doi.org/10.1556/ComEc.6.2005.2.12

Download citation