Advertisement

Community Ecology

, Volume 3, Issue 1, pp 51–57 | Cite as

The use of productivity and decomposition to address functional redundancy in the Neotropics

  • R. W. MysterEmail author
Article

Abstract

Past inability to come to a consensus about the degree of functional redundancy in ecosystems may be due, in part, to different definitions of ecosystem function and different investigative methodologies. Here I define ecosystem function, using the largely plant-based functions of aboveground productivity and decomposition of 10 common early successional trees found in Puerto Rico, and then use two different multivariate techniques to define functional groups. I found that: (1) multivariate statistical methods worked well to sort out the test species on axes defined primarily by productivity, which may have more redundancy than decomposition, and initial leaf nutrient content, (2) there were four plant functional groups defined by species (i) Psychotria berteriana, (ii) Cecropia schreberiana, (iii) Inga vera, and (iv) a group containing the other seven species, and (3) the plant traits of nitrogen-fixing capacity and mycorrhizal strategy mapped better onto these groups then those of seed size, wood density, shade tolerance or successional status. Finally, implications for key plant structures and for conservation of Neotropical areas are discussed.

Keywords

Lower montane wet rainforest LTER Luquillo Experimental Forest Successional trees 

Abbreviations

PCA

Principal Components Analysis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen E.B., M.F. Allen, D.J. Helm, J. M. Trappe, R. Molina and E. Rincon. 1995. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62.CrossRefGoogle Scholar
  2. Calderon-Gonzalez, F. 1993. The Role of Mycorrhizae in the Nutrient Absorptive Strategy of Important Landslide Colonizers. M.S. thesis, University of Puerto Rico, Rio Piedras.Google Scholar
  3. Chapin, F.C. 1997. Biotic control over the functioning of ecosystems. Science 277:500–504.CrossRefGoogle Scholar
  4. Cornelissen, J.H.C., P. CastroDiez and R. Hunt. 1996. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84:755–765.CrossRefGoogle Scholar
  5. Devoe, N.N. 1989. Differential Seedling and Regeneration in Openings and beneath Closed Canopy in Sub-tropical Wet Forest. PhD dissertation. School of Forestry and Environmental Studies, Yale University, New Haven, Connetinicut USA.Google Scholar
  6. Diaz, S. and M. Cabido. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8:463–474.CrossRefGoogle Scholar
  7. Ewel, J. J. and J. L. Whitmore. 1973. The Ecological Life Zones of Puerto Rico and the Virgin Islands. United States Forest Service Research Paper ITF-18. Institute of Tropical Forestry, Rio Piedras, Puerto Rico.Google Scholar
  8. Francis, J. K. and A. Rodriguez. 1993. Seeds of Puerto Rican trees and shrubs: second installment. Research note SO-374, USDA Forest Service. Southern Forest Experiment Station.CrossRefGoogle Scholar
  9. Gitay H. J., B. Wilson and W. G. Lee. 1996. Species redundancy: a redundant concept? J. Ecol. 84:121–124.CrossRefGoogle Scholar
  10. Grime, J. P. 1973. Plant Strategies and Vegetative Processes. Blackwell, New York.Google Scholar
  11. Hairston N. G., F. E. Smith and L. B. Slobodkin. 1960. Community structure, population control, and competition. Amer. Nat. 94:421–425.CrossRefGoogle Scholar
  12. Havens, K. E. 1994. Experimental perturbation of a freshwater plankton community: a test of hypotheses regarding the effects of stress. Oikos 69:147–153.CrossRefGoogle Scholar
  13. Huston, M. A. 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460.CrossRefGoogle Scholar
  14. Lawton, J. H. 1991. Are species useful? Oikos 62:3–4.CrossRefGoogle Scholar
  15. Lawton, J. H. and V. K. Brown. 1993. Redundancy in ecosystems. In: E. D. Schulze and H. A. Mooney (eds.), Biodiversity and Ecosystem Function. Springer-Verlag, Berlin. pp. 255–270Google Scholar
  16. Lawton J. H., D. E. Bignell, G. F. Bloemers, P. Eggleton and M. E. Hodda. 1996. Carbon flux and diversity of nematodes and termites in Cameroon forest soils. Biol. Cons. 5:261–273.CrossRefGoogle Scholar
  17. Liogier H. A. and L. F. Martorell. 1982. Flora of Puerto Rico and Adjacent Islands: a Systematic Synopsis. Editorial de la Universidad de Puerto Rico, Rio Piedras, PR.Google Scholar
  18. McGrady-Steed J. P., M. Harris and P. J. Morin. 1997. Biodiversity regulates ecosystem predictability. Nature 390:162–165.CrossRefGoogle Scholar
  19. Morin, P. J. 1995. Functional redundancy, non-additive interactions, and supply-side dynamics in experimental pond communities. Ecology 76:133–149.CrossRefGoogle Scholar
  20. Myster, R. W. 1997. Seed predation, disease and germination on landslides in Neotropical lower montane wet forest. J. Veg. Sci. 8:55–64.CrossRefGoogle Scholar
  21. Myster R. W. and D. S. Fernández. 1995. Spatial gradients and patch structure on two Puerto Rican landslides. Biotropica 27:149–159.CrossRefGoogle Scholar
  22. Myster R. W. and S. T. A. Pickett. 1988. Individualistic patterns of annuals and biennials in early successional old fields. Vegetatio 78:53–60.CrossRefGoogle Scholar
  23. Myster R. W. and S. T. A. Pickett. 1992. Dynamics of associations between plants in ten old fields during 31 years of succession. J. Ecol. 80:291–302.CrossRefGoogle Scholar
  24. Myster R. W. and L. R. Walker. 1997. Plant successional pathways on landslides in Puerto Rican landslides. J. Trop. Ecol. 13:165–173.CrossRefGoogle Scholar
  25. Naeem, S. and S. Li. 1997. Biodiversity enhances ecosystem reliability. Nature 390:507–509.CrossRefGoogle Scholar
  26. Odum, E. P. 1977. The emergence of ecology as a new integrative discipline. Science 195:1289–1293.CrossRefGoogle Scholar
  27. Orians G., Dirzo R. Z. and J. H. Cushman. 1996. Biodiversity and Ecosystem Process in Tropical Forests. Ecological Studies, Volume 122. Springer-Verlag, New York.CrossRefGoogle Scholar
  28. Ostfeld R. S., R. H. Manson and C. D. Canham. 1997. Effects of rodents on survival of tree seeds and seedlings invading old fields. Ecology 78:1531–1542.CrossRefGoogle Scholar
  29. Reyes G., Brown S., Chapman J. and A. E. Lugo. 1992. Wood Densities of Tropical Tree Species. U.S. Forest Service. Southern Forest Experiment Station. New Orleans, Louisiana. General Technical Report SO-88.CrossRefGoogle Scholar
  30. SAS 1997. SAS/STAT Software: Changes and Enhancements through Release 6.12. SAS Institute Inc. Cary, NC. 1167 pp.Google Scholar
  31. Scatena F. N., W. Silver, T. Siccama, A. Johnson and M. J. Sanchez, 1993. Biomass and nutrient content of the Bisley experimental watersheds, Luquillo Experimental Forest, Puerto Rico, before and after Hurricane Hugo 1989. Biotropica 25:15–27.CrossRefGoogle Scholar
  32. Schulze E. D. and H. A. Mooney. 1993. Biodiversity and Ecosystem Function. Ecological Studies Volume 99. Springer-Verlag, New York.CrossRefGoogle Scholar
  33. Smith, R. F. 1970. The vegetation structure of a Puerto Rican rainforest before and after short- term gamma Irradiation. In: A Tropical Rainforest: a Study of Irradiation and Ecology at El Verde, Puerto Rico. Office of Information Services, U.S. Atomic Energy Commission, pp. D103-D140.Google Scholar
  34. Tilman D. and J. A. Downing. 1994. Biodiversity and stability in grasslands. Nature 367:363–365.CrossRefGoogle Scholar
  35. Tilman D., J. Knops, D. Wedin, P. Reich, M. Ritchie and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302.CrossRefGoogle Scholar
  36. Tilman D., C. L. Lehman and C. E. Bristow. 1998. Diversity-stability relationships: statistical inevitability or ecological consequences. Amer. Nat. 151:277–282.CrossRefGoogle Scholar
  37. Vitousek, P. M. and D. U. Hooper. 1993. Biological diversity and terrestrial ecosystem biogeochemistry. In: E.D. Schulze and H. A. Mooney (eds.), Biodiversity and Ecosystem Function. Ecological Studies Vol. 99. Springer-Verlag. New York. pp. 3–14.Google Scholar
  38. Vitousek P. M. and R. L. Sanford. 1986. Nutrient cycling in moist tropical forest. Ann. Rev. Ecol. Syst. 17:137–167.CrossRefGoogle Scholar
  39. Walker B. H. 1992. Biological diversity and ecological redundancy. Cons. Biol. 6:18–23.CrossRefGoogle Scholar
  40. Wardle D. A., K. I. Bonner and K. S. Nicholson. 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258.CrossRefGoogle Scholar
  41. Wardle D. A., G. M. Barker, K. I. Bonner and K. S. Nicholson. 1998. Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J. Ecol. 86:405–420.CrossRefGoogle Scholar
  42. Watt A. S. 1947. Pattern and process in the plant community. J. Ecol. 35:1–22.CrossRefGoogle Scholar
  43. Wedin D. A. and D. Tilman. 1990. Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zou X., C. P. Zucca, R. B. Waide and W. H. McDowell. 1995. Long-term influence of deforestation on tree species composition and litter dynamics of atropical rain forest in Puerto Rico. For. Ecol. Manag. 78:147–157.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2001

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Central OklahomaEdmondUSA

Personalised recommendations