Community Ecology

, Volume 15, Issue 2, pp 187–193 | Cite as

Information retrieved from specimens at Natural History Collections can improve the quality of field-based ecological networks

  • R. A. González-VaqueroEmail author
  • A. I. Gravel
  • M. Devoto


Numerous studies analyze the interactions between plants and their pollinators in ecological communities using a network approach. However, field studies rarely record all the interactions occurring in the field. In this sense Natural History Collections (NHCs) can provide information on interactions that may have been missed by field sampling. In this study we compare a network based on field sampling with a network based on data retrieved from specimens at NHCs, and we assess the degree to which these two sources of data are complementary. For this we used data available from a bee biodiversity study conducted in Southern Argentina for the South American bee genus Corynura (Halictidae: Augochlorini). Data on the floral associations of the specimens at NHCs were retrieved from the specimens’ labels, as the name of the plant species on which a given bee was captured is often recorded for many specimens at NHCs. Although field sampling recorded an unusually high number of insect-plant interactions, it misses some unique interactions present in the NHCs networks. Some structural properties of these networks are briefly analyzed, and usefulness and limitations of using NHCs data are discussed. We conclude that the information about insect-plant interactions extracted from NHCs could complement field-based data, especially in poorly sampled communities.


Museum collections Mutualistic networks Plant-pollinator Pollination 



Anne-Isabelle Gravel


Consejo Nacional de Investigaciones Científicas y Técnicas


Facultad de Agronomía of the Universidad de Buenos Aires


Instituto Nacional de Tecnología Agropecuaria


Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’


Natural History Collections


Rocío Ana González-Vaquero


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2014_15020187_MOESM1_ESM.pdf (211 kb)
Supplementary material, approximately 216 KB.


  1. Alfken, J.D. 1913. Berschreibung einiger chilenischer Halictus-Arten (Hym). Deut. Entomol. Z. 1913: 323–329.Google Scholar
  2. Banasek-Richter, C., M.-F. Cattina and L.-F. Bersier. 2004. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226: 23–32.CrossRefPubMedGoogle Scholar
  3. Bascompte, J., P. Jordano, C.J. Melián and J.M. Olesen. 2003. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. USA 100: 9383–9387.CrossRefPubMedGoogle Scholar
  4. Bascompte, J. and P. Jordano. 2007. Plant–animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. S. 38: 567–593.CrossRefGoogle Scholar
  5. Biesmeijer, J.C., S.P.M. Roberts, M. Reemer, R. Ohlemuller, M. Edwards, T. Peeters, A.P. Schaffers, S.G. Potts, R. Kleukers, C.D. Thomas, J. Settele and W.E. Kunin. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351–354.CrossRefGoogle Scholar
  6. Blüthgen, N., J. Fründ, D.P. Vázquez and F. Menzel. 2008. What do interaction network metrics tell us about specialization and biological traits? Ecology 89: 3387–3399.CrossRefPubMedGoogle Scholar
  7. Bosch, J., A.M. Martín González, A. Rodrigo and D. Navarro. 2009. Plant-pollinator networks: adding the pollinator’s perspective. Ecol. Lett. 12: 409–419.CrossRefPubMedGoogle Scholar
  8. Burns, C.E., K.M. Johnston and O.J. Schmitz. 2003. Global climate change and mammalian species diversity in U.S. national parks. Proc. Natl. Acad. Sci. USA 100: 11474–11477.CrossRefPubMedGoogle Scholar
  9. Cameron, S.A., J.D. Lozier, J.P. Strange, J.B. Koch, N. Cordes, L.F. Solter and T.L. Griswold. 2011. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 108: 662–667.CrossRefPubMedGoogle Scholar
  10. Cane, J.H. and S.D. Sipes. 2006. Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. In: N.M. Waser and J. Ollerton (eds.), Specialization and Generalization in Plant-Pollinator Interactions. University of Chicago Press, Chicago. pp. 99–122.Google Scholar
  11. Chacoff, N.P., D.P. Vázquez, S.B. Lomáscolo, E.L. Stevani, J. Dorado and B. Padrón. 2012. Evaluating sampling completeness in a desert plant-pollinator network. J. Anim. Ecol. 81: 190–200.CrossRefPubMedGoogle Scholar
  12. Colla, S.R. and L. Packer. 2008. Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers. Conserv. 17: 1379–1391.CrossRefGoogle Scholar
  13. Dalsgaard, B., K. Trøjelsgaard, A.M. Martín Gonzalez, D. Nogues-Bravo, J. Ollerton, T. Petanidou, B. Sandel, M. Schleuning, Z. Wang, C. Rahbek, B. Sutherland, J-C. Svenning and J.M. Olesen. 2013. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36: 1–10.CrossRefGoogle Scholar
  14. Dayrat, B. 2005. Towards integrative taxonomy. Biol. J. Linn. Soc. 85: 407–415.CrossRefGoogle Scholar
  15. DeSalle, R., M.G. Egan and M. Siddall. 2005. The unholy trinity: taxonomy, species delimitation, and DNA barcoding. Philos. T. Roy. Soc. B. 360: 1905–1916.CrossRefGoogle Scholar
  16. Domínguez, M.C., S. Roig-Juñent, J.J. Tassin, F.C. Ocampo and G.E. Flores. 2006. Areas of endemism of the Patagonian steppe: an approach based on insect distributional patterns using endemicity analysis. J. Biogeogr. 33: 1527–1537.CrossRefGoogle Scholar
  17. Dorado, J., D.P. Vázquez, E.L. Stevani and N.P. Chacoff. 2011. Rareness and specialization in plant-pollinator networks. Ecology 92: 19–25.CrossRefPubMedGoogle Scholar
  18. Dormann C.F., B. Gruber and J. Fründ. 2008. Introducing the bipartite Package: Analysing Ecological Networks. R News 8: 8–11.Google Scholar
  19. Dormann, C.F., J. Fründ, N. Blüthgen and B. Gruber. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2: 7–24.CrossRefGoogle Scholar
  20. Droege, S. 2008. The very handy manual: how to catch and identify bees and manage a collection. USGS Native Bee Inventory and Monitoring Lab [WWW document]. URL [accessed on 7 January 2014].
  21. Farnsworth, E.J. and D.E. Ogurcak. 2006. Biogeography and decline of rare plants in New England: historical evidence and contemporary monitoring. Ecol. Appl. 16: 1327–1337.CrossRefPubMedGoogle Scholar
  22. Friese, H. 1916. Die Halictus-Arten von Chile (Hym). Deut. Entomol. Z. 1916: 547–564.Google Scholar
  23. Gravel, A-I. 2010. Bee Comunity Comparison in Northwestern Patagonia (Argentina). Master thesis, York University, Toronto.Google Scholar
  24. Herbst, P. 1922. Revision der Halictus-Arten von Chile (Hym). Entomol. Mitt. 11: 180–191.Google Scholar
  25. Labay, B., A.E. Cohen, B. Sissel, D.A. Hendrickson, F.D. Martin, and S. Sarkar. 2011. Assessing historical fish community composition using surveys, historical collection data, and species distribution models. PLoS ONE 6: e25145.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lewinsohn, T.M., P.I. Prado, P. Jordano, J. Bascompte and J. Olesen. 2006. Structure in plant–animal interaction assemblages. Oikos 113: 174–184.CrossRefGoogle Scholar
  27. Memmott, J. 1999. The structure of a plant–pollinator food web. Ecol. Lett. 2: 276–280.CrossRefGoogle Scholar
  28. Michener, C.D. 2007. The Bees of the World. Johns Hopkins University Press, Baltimore.Google Scholar
  29. Morrone, J.J. 2006. Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu. Rev. Entomol. 51: 467–494.CrossRefPubMedGoogle Scholar
  30. Moure, J.S., D. Urban and G.A.R. Melo. 2007. Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region. Sociedade Brasileira de Entomologia, Curitiba.Google Scholar
  31. Oksanen J., F.G. Blanchet, R. Kindt, P. Legendre, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2010. Vegan: Community Ecology Package. R package version 1.17–2. [WWW document]. URL [accessed on 7 January 2014].
  32. Olesen, J.M., J. Bascompte, Y.L. Dupont and P. Jordano. 2007. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 104: 19891–19896.CrossRefPubMedGoogle Scholar
  33. Ollerton, J., V. Price, W.S. Armbruster, J. Memmott, S. Watts, N.M. Waser, Ø. Totland, D. Goulson, R. Alarcón, J.S. Stout and S. Tarrant. 2012. Overplaying the role of honey bees as pollinators. Trends Ecol. Evol. 27: 141–142.CrossRefPubMedGoogle Scholar
  34. Petanidou, T., A.S. Kallimanis, J. Tzanopoulos, S.P. Sgardelis and J.D. Pantis. 2008. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure, and implications for estimates of specialization. Ecol. Lett. 11: 564–575.CrossRefPubMedPubMedCentralGoogle Scholar
  35. R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Viena, Austria. [WWW document]. URL [accessed on 7 January 2014].Google Scholar
  36. Rezende, E.L., P. Jordano and J. Bascompte. 2007. Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos 116: 1919–1929.CrossRefGoogle Scholar
  37. Rivera-Hutinel, A., R.O. Bustamante, V.H. Marín and R. Medel. 2012. Effects of sampling completeness on the structure of plant-pollinator networks. Ecology 93: 1593–1603.CrossRefPubMedGoogle Scholar
  38. Sánchez-Cordero, V. and E. Martínez-Meyer. 2000. Museum specimen data predict crop damage by tropical rodents. Proc. Natl. Acad. Sci. USA 97: 7074–7077.CrossRefPubMedGoogle Scholar
  39. Szumik, C., L. Aagesen, D. Casagranda, V. Arzamendia, D. Baldo, L.E. Claps, F. Cuezzo, J.M. Díaz Gómez, A. Di Giacomo, A. Giraudo, P. Goloboff, C. Gramajo, C. Kopuchian, S. Kretzschmar, M. Lizarralde, A. Molina, M. Mollerach, F. Navarro, S. Nomdedeu, A. Panizza, V.V. Pereyra, M. Sandoval, G. Scrocchi, and F.O. Zuloaga. 2012. Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics 28: 317–329.CrossRefGoogle Scholar
  40. Townsend Peterson, A. and A.G. Navarro-Singüenza. 2009. Making biodiversity discovery more efficient: An exploratory test using Mexican birds. Zootaxa 2246: 58–66.CrossRefGoogle Scholar
  41. Tylianakis, J.M., T. Tscharntke and O.T. Lewis. 2007. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445: 202–205.CrossRefGoogle Scholar
  42. Vázquez, D.P. and M.A. Aizen. 2003. Null model analyses of specialization in plant-pollinator interactions. Ecology 84: 2493–1501.CrossRefGoogle Scholar
  43. Vázquez, D.P., N. Blüthgen, L. Cagnolo and N.P. Chacoff. 2009. Uniting pattern and process in plant-animal mutualistic networks: a review. Ann. Bot. 103: 1445–1457.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Waser N.M., L. Chittka, M.V. Price, N.M. Williams and J. Ollerton. 1996. Generalization in pollination systems, and why it matters. Ecology 77: 1043–1060.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • R. A. González-Vaquero
    • 1
    Email author
  • A. I. Gravel
    • 2
  • M. Devoto
    • 3
  1. 1.Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’CONICETBuenos AiresArgentina
  2. 2.York UniversityTorontoCanada
  3. 3.Cátedra de Botánica, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations