Community Ecology

, Volume 15, Issue 2, pp 139–146 | Cite as

Species’ ecological traits correlate with predicted climatically-induced shifts of European breeding ranges in birds

  • M. Koschová
  • F. Kuda
  • D. Hořák
  • J. ReifEmail author


Climatically induced shifts of species’ geographic ranges can provide important information about the potential future assembly of ecological communities. Surprisingly, interspecific variability in the magnitude and direction of these range shifts in birds has been the subject of few scientific studies, and a more detailed examination of species’ ecological traits related to this variability is needed. Using maps in the Climatic Atlas of European Breeding Birds (Huntley et al. 2007) we calculated the potential shifts of European breeding ranges in 298 bird species, and explored their relationships with breeding habitat, dietary niche, migration strategy, life history and geographic position of the current breeding range. Breeding habitat type showed the strongest relationship with the potential range shifts, with forest and wetland species showing the largest magnitude of shift. At the same time, ecological specialists showed a larger magnitude of shifts than generalists. In addition, we found that species with current ranges situated near continental borders and species with lower migratory capacity are more limited in their potential to shift due to climate change. Our analyses thus indicate which ecological groups of birds will be most likely forced to move their ranges under predicted climate change. This knowledge can help to adopt proper conservation actions. These actions will be particularly important in the case of specialist species, which have been shown to be the most sensitive to climate change impacts.


Birds Climate change Climatic envelope Ecological niche Life history Range shift 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2014_15020139_MOESM1_ESM.pdf (33 kb)
Supplementary material, approximately 34 KB.


  1. Angert, A.L., L.G. Crozier, L.J. Rissler, S.E. Gilman, J.J. Tewsbury and A.J. Chunco. 2011. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14: 677–689.CrossRefPubMedGoogle Scholar
  2. Araujo, M.B. and M. New. 2006. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22: 42–47.CrossRefPubMedGoogle Scholar
  3. Araujo, M.B., W. Thuiller and N.G. Yoccoz. 2009. Reopening the climate envelope reveals macroscale associations with climate in European birds. Proc. Natl. Acad. Sci. USA 106: E45–E46.CrossRefPubMedGoogle Scholar
  4. Barbet-Massin, M., W. Thuiller and F. Jiguet. 2012. The fate of European breeding birds under climate, landuse and dispersal scenarios. Glob. Change Biol. 18: 881–890.CrossRefGoogle Scholar
  5. Barnagaud, J.Y., V. Devictor, F. Jiguet, M. Barbet-Massin, I. Le Viol and F. Archaux. 2012. Relating habitat and climatic niches in birds. PLoS ONE 7(3): e32819.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beale, C.M., N.E. Baker, M.J. Brewer and J.J. Lennon. 2013. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 16: 1061–1068.CrossRefPubMedGoogle Scholar
  7. Böhning-Gaese, K., B. Halbe, N. Lemoine and R. Oberrath. 2000. Factors influencing the clutch size, number of broods and annual fecundity of North American and European land birds. Evol. Ecol. Res. 2: 823–839.Google Scholar
  8. Böhning-Gaese, K. and R. Oberrath. 2003. Macroecology of habitat choice in long-distance migratory birds. Oecologia 137: 296–303.CrossRefPubMedGoogle Scholar
  9. Both, C., S. Bouwhuis, C.M. Lessells and M.E. Visser. 2006. Climate change and population declines in a long-distance migratory bird. Nature 441: 81–83.CrossRefPubMedGoogle Scholar
  10. Both, C., C.A.M. Van Turnhout, R.G. Bijlsma, H. Siepel, A.J. van Strien and R.P.B. Foppen. 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. Royal Soc. Biol. Sc. 277: 1259–1266.CrossRefGoogle Scholar
  11. Brommer, J.E. 2008. Extent of recent polewards range margin shifts in Finnish birds depends on their body mass and feeding ecology. Ornis Fennica 85: 109–117.Google Scholar
  12. Buckley, L.B. and J.G. Kingsolver. 2012. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. 43: 205–226.CrossRefGoogle Scholar
  13. Butchart, S.H.M, M. Walpole, B. Collen, A. Van Strien, J.P.W. Scharlemann, R.E.A. Almond, J.E.M. Baillie, B. Bomhard, C. Brown, J. Bruno, K.E. Carpenter, G.M. Carr, J. Chanson, A.M. Chenery, J. Csirke, N.C. Davidson, F. Dentener, M. Foster, A. Galli, J.N. Galloway, P. Genovesi, R.D. Gregory, M. Hockings, V. Kapos, J.F. Lamarque, F. Leverington, J. Loh, M.A. McGeoch, L. McRae, A. Minasyan, M. Hernández Morcillo, T.E.E. Oldfield, D. Pauly, S. Quader, C. Revenga, J.R. Sauer, B. Skolnik, D. Spear, D.S.N. Stanwell-Smith, S.N. Stuart, A. Symes, M. Tierney, T.D. Tyrrell, J.C. Vié and R.Watson,. 2010. Global biodiversity: indicators of recent declines. Science 328: 1164–1168.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chessman, B.C. 2012. Biological traits predict shifts in geographical ranges of freshwater invertebrates during climatic warming and drying. J. Biogeogr. 39: 957–969.CrossRefGoogle Scholar
  15. Cramp, S.E. 2006. The Birds of the Western Palearctic Interactive. Oxford Univ. Press and BirdGuides.Google Scholar
  16. Crick, H.Q.P. 2004. The impact of climate change on birds. Ibis 146: S48–S56.CrossRefGoogle Scholar
  17. Devictor, V., C. van Swaay, T. Brereton, L. Brotons, D. Chamberlain, J. Heliölä, S. Herrando, R. Julliard, M. Kuussaari, Å. Lindström, J. Reif, D.B. Roy, O. Schweiger, J. Settele, C. Stefanescu, A. Van Strien, C. Van Turnhout, Z. Vermouzek, M. WallisDeVries, I. Wynhoff and F. Jiguet. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change 2: 121–124.CrossRefGoogle Scholar
  18. Donald, P.F., F.J. Sanderson, I.J. Burfield, S.M. Bierman, R.D. Gregory and Z. Waliczky. 2007. International conservation policy delivers benefits for birds in Europe. Science 317: 810–813.CrossRefPubMedGoogle Scholar
  19. Eglington, S.M. and J.W. Pearce-Higgins. 2012. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS ONE 7(3): e30407.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Esri. 2006. ArcGIS 9.2 Esri, Praha, Czech RepublicGoogle Scholar
  21. Fairhurst, G.D. and M.J. Bechard. 2005. Relationship between winter and spring weather and Northern Goshawk (Accipiter gentilis) reproduction in Northern Nevada. J. Rapt. Res. 39: 229–236.Google Scholar
  22. Goodenough, A.E. and A.G. Hart. 2013. Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism. Clim. Change 118: 659–669.CrossRefGoogle Scholar
  23. Gregory, R.D., S.G. Willis, F. Jiguet, P. Voříšek, A. Klvaňová et al. 2009. An indicator of the impact of climatic change on European bird populations. PLoS ONE 4: e4678.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hagemeijer, W.J.M. and M.J. Blair. 1997. The EBCC Atlas of European Breeding Birds. Their Distribution and Abundance. T and AD Poyser, London, UKGoogle Scholar
  25. Hernandez, P.A., C.H. Graham, L.L. Master and D.L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773–785.CrossRefGoogle Scholar
  26. Hitch, A.T. and P.L. Leberg. 2007. Breeding distributions of north American bird species moving north as a result of climate change. Conservation Biology 21: 534–539.CrossRefPubMedGoogle Scholar
  27. Hoffman, G.W. 1983. A Geography of Europe. John Wiley & Sons, New York, USA.Google Scholar
  28. Hole, D.G., S.G. Willis, D.J. Pain, L.D. Fishpool, S.H.M. Butchart, Y.C. Collingham, C. Rahbek and B. Huntley. 2009. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12: 420–431.CrossRefPubMedGoogle Scholar
  29. Huntley, B., Y.C. Collingham, R.E. Green, G.M. Hilton, C. Rahbek and S.G. Willis. 2006. Potential impacts of climatic change upon geographical distributions of birds. Ibis 148: 8–28.CrossRefGoogle Scholar
  30. Huntley, B., R.E. Green, Y.C. Collingham and S.G. Willis. 2007. A climatic Atlas of European Breeding Birds. Lynx Editions, Barcelona, Spain.Google Scholar
  31. Huntley, B., Y.C. Collingham, S.G. Willis and R.E. Green. 2008. Potential impacts of climate change on European breeding birds. PLoS ONE 3: e1439.CrossRefPubMedPubMedCentralGoogle Scholar
  32. IPCC 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK.Google Scholar
  33. IPCC. 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK.Google Scholar
  34. Jetz, W., D.S.Wilcove and A.P. Dobson. 2007. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5: e157.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jiguet, F., R. Julliard, C.D. Thomas, O. Dehorter, S.E. Newson and D. Couvet. 2007. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13: 1672–1684.CrossRefGoogle Scholar
  36. Jiguet, F., R.D. Gregory, V. Devictor, R.E. Green, P. Vořísek, A. Van Strien and D. Couvet. 2010. Population trends of European birds are correlated with characteristics of their climatic niche. Glob. Change Biol. 16: 497–505.CrossRefGoogle Scholar
  37. Jiménez-Valverde, A., N. Barve, A. Lira-Noriega, S..P Maher, Y. Nakazawa, M. Papes, J. Soberón, J. Sukuraman and A. T. Peterson. 2011. Dominant climate influences on North American bird distributions. Global Ecol. Biogeogr. 20: 114–118.CrossRefGoogle Scholar
  38. Jongsomjit, D., D. Stralberg, T. Gardali, L. Salas and J. Wiens. 2013. Between a rock and a hard place: the impacts of climate change and housing development on breeding birds in California. Landscape Ecology 28: 187–200.CrossRefGoogle Scholar
  39. Kharouba, H.M., J.L. McCune, W. Thullier and B. Huntley. 2013. Do ecological differences between taxonomic groups influence the relationship between species’ distributions and climate? A global meta-analysis using species distribution models. Ecography 36: 657–664.CrossRefGoogle Scholar
  40. Koleček, J., J. Reif, K. Šťastný and V. Bejček. 2010. Changes in bird distribution in a Central European country between 1985–1989 and 2001–2003. J. Ornithol. 151: 923–932.CrossRefGoogle Scholar
  41. Koleček, J. and J. Reif. 2011. Differences between the predictors of abundance, trend and distribution as three measures of avian population change. Acta Ornithol. 46: 143–153.CrossRefGoogle Scholar
  42. La Sorte, F.A. and F.R. Thompson. 2007. Poleward shifts in winter ranges of North American birds. Ecology 88: 1803–1812.CrossRefGoogle Scholar
  43. La Sorte, F.A. and W. Jetz. 2010. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. B. 277: 3401–3410.CrossRefPubMedGoogle Scholar
  44. Lemoine, N., and K. Böhning-Gaese. 2003. Potential impact of global climate change on species richness of long-distance migrants. Conserv. Biol. 17: 577–586.CrossRefGoogle Scholar
  45. Lemoine, N, H.G. Bauer, M. Peintinger and K. Bohning-Gaese. 2007. Effects of climate and land-use change on species abundance in a central European bird community. Conserv. Biol. 21: 495–503.CrossRefPubMedGoogle Scholar
  46. Mantyka-Pringle, C.S., T.G. Martin and J.R. Rhodes. 2012. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18: 1239–1252.CrossRefGoogle Scholar
  47. Møller., A.P., M. Diaz, E. Flensted-Jensen, T. Grim, J.D. Ibáñez-Álamo, J. Jokimäki, R. Mänd, G. Markó and P. Tryjanowski. 2012. High urban population density of birds reflects their timing of urbanization. Oecologia 170: 867–875.CrossRefPubMedGoogle Scholar
  48. Paradis, E. 2009. Moran’s Autocorrelation Coefficient in Comparative Methods. R Foundation for Statistical Computing. Vienna.Google Scholar
  49. Pautasso, M. 2012. Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian J. Zool. 79: 296–314.CrossRefGoogle Scholar
  50. Pearce-Higgins, J.W., R.B. Bradbury, D.E. Chamberlain, A. Drewitt, R.H.W. Langston and S.G. Willis. 2011. Targeting research to underpin climate change adaptation for birds. Ibis 153: 207–211.CrossRefGoogle Scholar
  51. Pigot, A.L. and J.A. Tobias. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16: 330–338.CrossRefPubMedGoogle Scholar
  52. Pöyry, J., M. Luoto, R.K. Heikkinen, M. Kuussaari and K. Saarinen. 2009. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15: 732–743.CrossRefGoogle Scholar
  53. R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna.Google Scholar
  54. Rapacciulo, G., D.B. Roy, S. Gillings, R. Fox, K. Walker and A. Purvis. 2012. Climatic associations of British species distributions show good transferrability in time but low predictive accuracy for range change. PLoS ONE 7: e40212.CrossRefGoogle Scholar
  55. Reif, J., K. Šťastný and V. Bejček. 2010. Contrasting effects of climatic and habitat changes on birds with northern range limits in central Europe as revealed by an analysis of breeding distribution in the Czech Republic. Acta Orn. 45: 83–90.CrossRefGoogle Scholar
  56. Sanz, J.J., J. Potti, J. Moreno, S. Merino and O. Frias. 2003. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Glob. Change Biol. 9: 461–472.CrossRefGoogle Scholar
  57. Smith, S.E., R.D. Gregory, B.J. Anderson and C.D. Thomas. 2013. The past, present and potential future distribution of clod-adapted bird species. Diversity Distrib. 19: 352–362.CrossRefGoogle Scholar
  58. Thomas, C. and J.J. Lennon. 1999. Bird extend their range northwards. Nature 399: 6733.Google Scholar
  59. Thomas, C.D., P.K. Gillingham, R.B. Bradbury, D.B. Roy, B.J. Anderson, J.M. Baxter, N.A.D. Bourn, H.Q.P. Crick, R.A. Findon, R. Fox, J.A. Hogson, A.R. Holt, M.D. Morecroft, N.J. O’Hanlon, T.H. Oliver, J.W. Pearce-Higgins, D.A. Procter, J.A. Thomas, K.J. Walker, C.A. Walmsley, R.J. Wilson and J.K. Hill. 2012. Protected areas facilitate species’ range expansions. PNAS 109: 14063–14068.CrossRefPubMedGoogle Scholar
  60. Van Turnhout, C.A.M., R.P.B. Foppen, R.S.E.W. Leuven, H. Siepel and H. Esselink. 2007. Scale-dependent homogenization: Changes in breeding bird diversity in the Netherlands over a 25-year period. Biol Conserv. 134: 505–516.CrossRefGoogle Scholar
  61. Virkkala, R., M. Marmion, R.K. Heikkinen, W. Thuillier and M. Luoto. 2010. Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecol. 36: 269–281.CrossRefGoogle Scholar
  62. Zwarts, L., R.G. Bijlsma, J. van der Kamp and E. Wymenga. 2010. Living on the Edge: Wetlands and Birds in a Changing Sahel. KNNV Publishing, Netherlands.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute for Environmental Studies, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.Department of Geography, Faculty of ScienceMasaryk University BrnoBrnoCzech Republic
  3. 3.Department of Ecology, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  4. 4.Department of Zoology and Laboratory of Ornithology, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic

Personalised recommendations