Species’ ecological traits correlate with predicted climatically-induced shifts of European breeding ranges in birds

Abstract

Climatically induced shifts of species’ geographic ranges can provide important information about the potential future assembly of ecological communities. Surprisingly, interspecific variability in the magnitude and direction of these range shifts in birds has been the subject of few scientific studies, and a more detailed examination of species’ ecological traits related to this variability is needed. Using maps in the Climatic Atlas of European Breeding Birds (Huntley et al. 2007) we calculated the potential shifts of European breeding ranges in 298 bird species, and explored their relationships with breeding habitat, dietary niche, migration strategy, life history and geographic position of the current breeding range. Breeding habitat type showed the strongest relationship with the potential range shifts, with forest and wetland species showing the largest magnitude of shift. At the same time, ecological specialists showed a larger magnitude of shifts than generalists. In addition, we found that species with current ranges situated near continental borders and species with lower migratory capacity are more limited in their potential to shift due to climate change. Our analyses thus indicate which ecological groups of birds will be most likely forced to move their ranges under predicted climate change. This knowledge can help to adopt proper conservation actions. These actions will be particularly important in the case of specialist species, which have been shown to be the most sensitive to climate change impacts.

References

  1. Angert, A.L., L.G. Crozier, L.J. Rissler, S.E. Gilman, J.J. Tewsbury and A.J. Chunco. 2011. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14: 677–689.

    Article  PubMed  Google Scholar 

  2. Araujo, M.B. and M. New. 2006. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22: 42–47.

    Article  PubMed  Google Scholar 

  3. Araujo, M.B., W. Thuiller and N.G. Yoccoz. 2009. Reopening the climate envelope reveals macroscale associations with climate in European birds. Proc. Natl. Acad. Sci. USA 106: E45–E46.

    Article  CAS  PubMed  Google Scholar 

  4. Barbet-Massin, M., W. Thuiller and F. Jiguet. 2012. The fate of European breeding birds under climate, landuse and dispersal scenarios. Glob. Change Biol. 18: 881–890.

    Article  Google Scholar 

  5. Barnagaud, J.Y., V. Devictor, F. Jiguet, M. Barbet-Massin, I. Le Viol and F. Archaux. 2012. Relating habitat and climatic niches in birds. PLoS ONE 7(3): e32819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beale, C.M., N.E. Baker, M.J. Brewer and J.J. Lennon. 2013. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 16: 1061–1068.

    Article  PubMed  Google Scholar 

  7. Böhning-Gaese, K., B. Halbe, N. Lemoine and R. Oberrath. 2000. Factors influencing the clutch size, number of broods and annual fecundity of North American and European land birds. Evol. Ecol. Res. 2: 823–839.

    Google Scholar 

  8. Böhning-Gaese, K. and R. Oberrath. 2003. Macroecology of habitat choice in long-distance migratory birds. Oecologia 137: 296–303.

    Article  PubMed  Google Scholar 

  9. Both, C., S. Bouwhuis, C.M. Lessells and M.E. Visser. 2006. Climate change and population declines in a long-distance migratory bird. Nature 441: 81–83.

    Article  CAS  PubMed  Google Scholar 

  10. Both, C., C.A.M. Van Turnhout, R.G. Bijlsma, H. Siepel, A.J. van Strien and R.P.B. Foppen. 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. Royal Soc. Biol. Sc. 277: 1259–1266.

    Article  Google Scholar 

  11. Brommer, J.E. 2008. Extent of recent polewards range margin shifts in Finnish birds depends on their body mass and feeding ecology. Ornis Fennica 85: 109–117.

    Google Scholar 

  12. Buckley, L.B. and J.G. Kingsolver. 2012. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. 43: 205–226.

    Article  Google Scholar 

  13. Butchart, S.H.M, M. Walpole, B. Collen, A. Van Strien, J.P.W. Scharlemann, R.E.A. Almond, J.E.M. Baillie, B. Bomhard, C. Brown, J. Bruno, K.E. Carpenter, G.M. Carr, J. Chanson, A.M. Chenery, J. Csirke, N.C. Davidson, F. Dentener, M. Foster, A. Galli, J.N. Galloway, P. Genovesi, R.D. Gregory, M. Hockings, V. Kapos, J.F. Lamarque, F. Leverington, J. Loh, M.A. McGeoch, L. McRae, A. Minasyan, M. Hernández Morcillo, T.E.E. Oldfield, D. Pauly, S. Quader, C. Revenga, J.R. Sauer, B. Skolnik, D. Spear, D.S.N. Stanwell-Smith, S.N. Stuart, A. Symes, M. Tierney, T.D. Tyrrell, J.C. Vié and R.Watson,. 2010. Global biodiversity: indicators of recent declines. Science 328: 1164–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chessman, B.C. 2012. Biological traits predict shifts in geographical ranges of freshwater invertebrates during climatic warming and drying. J. Biogeogr. 39: 957–969.

    Article  Google Scholar 

  15. Cramp, S.E. 2006. The Birds of the Western Palearctic Interactive. Oxford Univ. Press and BirdGuides.

  16. Crick, H.Q.P. 2004. The impact of climate change on birds. Ibis 146: S48–S56.

    Article  Google Scholar 

  17. Devictor, V., C. van Swaay, T. Brereton, L. Brotons, D. Chamberlain, J. Heliölä, S. Herrando, R. Julliard, M. Kuussaari, Å. Lindström, J. Reif, D.B. Roy, O. Schweiger, J. Settele, C. Stefanescu, A. Van Strien, C. Van Turnhout, Z. Vermouzek, M. WallisDeVries, I. Wynhoff and F. Jiguet. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change 2: 121–124.

    Article  Google Scholar 

  18. Donald, P.F., F.J. Sanderson, I.J. Burfield, S.M. Bierman, R.D. Gregory and Z. Waliczky. 2007. International conservation policy delivers benefits for birds in Europe. Science 317: 810–813.

    Article  CAS  PubMed  Google Scholar 

  19. Eglington, S.M. and J.W. Pearce-Higgins. 2012. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS ONE 7(3): e30407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esri. 2006. ArcGIS 9.2 Esri, Praha, Czech Republic

  21. Fairhurst, G.D. and M.J. Bechard. 2005. Relationship between winter and spring weather and Northern Goshawk (Accipiter gentilis) reproduction in Northern Nevada. J. Rapt. Res. 39: 229–236.

    Google Scholar 

  22. Goodenough, A.E. and A.G. Hart. 2013. Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism. Clim. Change 118: 659–669.

    Article  Google Scholar 

  23. Gregory, R.D., S.G. Willis, F. Jiguet, P. Voříšek, A. Klvaňová et al. 2009. An indicator of the impact of climatic change on European bird populations. PLoS ONE 4: e4678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hagemeijer, W.J.M. and M.J. Blair. 1997. The EBCC Atlas of European Breeding Birds. Their Distribution and Abundance. T and AD Poyser, London, UK

    Google Scholar 

  25. Hernandez, P.A., C.H. Graham, L.L. Master and D.L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773–785.

    Article  Google Scholar 

  26. Hitch, A.T. and P.L. Leberg. 2007. Breeding distributions of north American bird species moving north as a result of climate change. Conservation Biology 21: 534–539.

    Article  PubMed  Google Scholar 

  27. Hoffman, G.W. 1983. A Geography of Europe. John Wiley & Sons, New York, USA.

    Google Scholar 

  28. Hole, D.G., S.G. Willis, D.J. Pain, L.D. Fishpool, S.H.M. Butchart, Y.C. Collingham, C. Rahbek and B. Huntley. 2009. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12: 420–431.

    Article  PubMed  Google Scholar 

  29. Huntley, B., Y.C. Collingham, R.E. Green, G.M. Hilton, C. Rahbek and S.G. Willis. 2006. Potential impacts of climatic change upon geographical distributions of birds. Ibis 148: 8–28.

    Article  Google Scholar 

  30. Huntley, B., R.E. Green, Y.C. Collingham and S.G. Willis. 2007. A climatic Atlas of European Breeding Birds. Lynx Editions, Barcelona, Spain.

    Google Scholar 

  31. Huntley, B., Y.C. Collingham, S.G. Willis and R.E. Green. 2008. Potential impacts of climate change on European breeding birds. PLoS ONE 3: e1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. IPCC 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  33. IPCC. 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  34. Jetz, W., D.S.Wilcove and A.P. Dobson. 2007. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5: e157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiguet, F., R. Julliard, C.D. Thomas, O. Dehorter, S.E. Newson and D. Couvet. 2007. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13: 1672–1684.

    Article  Google Scholar 

  36. Jiguet, F., R.D. Gregory, V. Devictor, R.E. Green, P. Vořísek, A. Van Strien and D. Couvet. 2010. Population trends of European birds are correlated with characteristics of their climatic niche. Glob. Change Biol. 16: 497–505.

    Article  Google Scholar 

  37. Jiménez-Valverde, A., N. Barve, A. Lira-Noriega, S..P Maher, Y. Nakazawa, M. Papes, J. Soberón, J. Sukuraman and A. T. Peterson. 2011. Dominant climate influences on North American bird distributions. Global Ecol. Biogeogr. 20: 114–118.

    Article  Google Scholar 

  38. Jongsomjit, D., D. Stralberg, T. Gardali, L. Salas and J. Wiens. 2013. Between a rock and a hard place: the impacts of climate change and housing development on breeding birds in California. Landscape Ecology 28: 187–200.

    Article  Google Scholar 

  39. Kharouba, H.M., J.L. McCune, W. Thullier and B. Huntley. 2013. Do ecological differences between taxonomic groups influence the relationship between species’ distributions and climate? A global meta-analysis using species distribution models. Ecography 36: 657–664.

    Article  Google Scholar 

  40. Koleček, J., J. Reif, K. Šťastný and V. Bejček. 2010. Changes in bird distribution in a Central European country between 1985–1989 and 2001–2003. J. Ornithol. 151: 923–932.

    Article  Google Scholar 

  41. Koleček, J. and J. Reif. 2011. Differences between the predictors of abundance, trend and distribution as three measures of avian population change. Acta Ornithol. 46: 143–153.

    Article  Google Scholar 

  42. La Sorte, F.A. and F.R. Thompson. 2007. Poleward shifts in winter ranges of North American birds. Ecology 88: 1803–1812.

    Article  Google Scholar 

  43. La Sorte, F.A. and W. Jetz. 2010. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. B. 277: 3401–3410.

    Article  PubMed  Google Scholar 

  44. Lemoine, N., and K. Böhning-Gaese. 2003. Potential impact of global climate change on species richness of long-distance migrants. Conserv. Biol. 17: 577–586.

    Article  Google Scholar 

  45. Lemoine, N, H.G. Bauer, M. Peintinger and K. Bohning-Gaese. 2007. Effects of climate and land-use change on species abundance in a central European bird community. Conserv. Biol. 21: 495–503.

    Article  PubMed  Google Scholar 

  46. Mantyka-Pringle, C.S., T.G. Martin and J.R. Rhodes. 2012. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18: 1239–1252.

    Article  Google Scholar 

  47. Møller., A.P., M. Diaz, E. Flensted-Jensen, T. Grim, J.D. Ibáñez-Álamo, J. Jokimäki, R. Mänd, G. Markó and P. Tryjanowski. 2012. High urban population density of birds reflects their timing of urbanization. Oecologia 170: 867–875.

    Article  PubMed  Google Scholar 

  48. Paradis, E. 2009. Moran’s Autocorrelation Coefficient in Comparative Methods. R Foundation for Statistical Computing. Vienna.

  49. Pautasso, M. 2012. Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian J. Zool. 79: 296–314.

    Article  Google Scholar 

  50. Pearce-Higgins, J.W., R.B. Bradbury, D.E. Chamberlain, A. Drewitt, R.H.W. Langston and S.G. Willis. 2011. Targeting research to underpin climate change adaptation for birds. Ibis 153: 207–211.

    Article  Google Scholar 

  51. Pigot, A.L. and J.A. Tobias. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16: 330–338.

    Article  PubMed  Google Scholar 

  52. Pöyry, J., M. Luoto, R.K. Heikkinen, M. Kuussaari and K. Saarinen. 2009. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15: 732–743.

    Article  Google Scholar 

  53. R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna.

  54. Rapacciulo, G., D.B. Roy, S. Gillings, R. Fox, K. Walker and A. Purvis. 2012. Climatic associations of British species distributions show good transferrability in time but low predictive accuracy for range change. PLoS ONE 7: e40212.

    Article  CAS  Google Scholar 

  55. Reif, J., K. Šťastný and V. Bejček. 2010. Contrasting effects of climatic and habitat changes on birds with northern range limits in central Europe as revealed by an analysis of breeding distribution in the Czech Republic. Acta Orn. 45: 83–90.

    Article  Google Scholar 

  56. Sanz, J.J., J. Potti, J. Moreno, S. Merino and O. Frias. 2003. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Glob. Change Biol. 9: 461–472.

    Article  Google Scholar 

  57. Smith, S.E., R.D. Gregory, B.J. Anderson and C.D. Thomas. 2013. The past, present and potential future distribution of clod-adapted bird species. Diversity Distrib. 19: 352–362.

    Article  Google Scholar 

  58. Thomas, C. and J.J. Lennon. 1999. Bird extend their range northwards. Nature 399: 6733.

    Google Scholar 

  59. Thomas, C.D., P.K. Gillingham, R.B. Bradbury, D.B. Roy, B.J. Anderson, J.M. Baxter, N.A.D. Bourn, H.Q.P. Crick, R.A. Findon, R. Fox, J.A. Hogson, A.R. Holt, M.D. Morecroft, N.J. O’Hanlon, T.H. Oliver, J.W. Pearce-Higgins, D.A. Procter, J.A. Thomas, K.J. Walker, C.A. Walmsley, R.J. Wilson and J.K. Hill. 2012. Protected areas facilitate species’ range expansions. PNAS 109: 14063–14068.

    Article  PubMed  Google Scholar 

  60. Van Turnhout, C.A.M., R.P.B. Foppen, R.S.E.W. Leuven, H. Siepel and H. Esselink. 2007. Scale-dependent homogenization: Changes in breeding bird diversity in the Netherlands over a 25-year period. Biol Conserv. 134: 505–516.

    Article  Google Scholar 

  61. Virkkala, R., M. Marmion, R.K. Heikkinen, W. Thuillier and M. Luoto. 2010. Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecol. 36: 269–281.

    Article  Google Scholar 

  62. Zwarts, L., R.G. Bijlsma, J. van der Kamp and E. Wymenga. 2010. Living on the Edge: Wetlands and Birds in a Changing Sahel. KNNV Publishing, Netherlands.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Reif.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koschová, M., Kuda, F., Hořák, D. et al. Species’ ecological traits correlate with predicted climatically-induced shifts of European breeding ranges in birds. COMMUNITY ECOLOGY 15, 139–146 (2014). https://doi.org/10.1556/ComEc.15.2014.2.2

Download citation

Keywords

  • Birds
  • Climate change
  • Climatic envelope
  • Ecological niche
  • Life history
  • Range shift