Advertisement

Community Ecology

, Volume 15, Issue 1, pp 37–43 | Cite as

Disentangling the role of remotely sensed spectral heterogeneity as a proxy for North American plant species richness

  • D. RocchiniEmail author
  • L. Dadalt
  • L. Delucchi
  • M. Neteler
  • M. W. Palmer
Article

Abstract

Due to the difficulties of field-based species data collection at wide spatial scales, remotely sensed spectral diversity has been advocated as one of the most effective proxies of ecosystem and species diversity. It is widely accepted that the relationship between species and spectral diversity is scale dependent. However, few studies have evaluated the impacts of scale on species diversity estimates from remote sensing data. In this paper we tested the species versus spectral relationship over very large scales (extents) with a varying spatial grain using floristic data of North America. Spectral diversity explained a low amount of variance while spatial extent of the sampling units (floras) explained a high amount of variance based on results from our variance partitioning analyses. This leads to the conclusion that spectral diversity must be carefully related to species diversity, explicitly taking into account potential area effects.

Keywords

Area effects Species diversity Spectral variation hypothesis Variance partitioning. 

Abbreviation

MODIS

Moderate Resolution Imaging Spectrometer

NDVI

Normalized Difference Vegetation Index

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2014_1501037_MOESM1_ESM.pdf (109 kb)
Supplementary material, approximately 112 KB.

References

  1. Arrhenius, O. 1921. Species and area. J. Ecol. 9: 95–99.CrossRefGoogle Scholar
  2. Bino, G., N. Levin, S. Darawshi, N. van der Hal, A. Reich-Solomon and S. Kark. 2008. Landsat derived NDVI and spectral unmixing accurately predict bird species richness patterns in an urban landscape. Internat. J. Remote Sens. 29: 3675–3700.CrossRefGoogle Scholar
  3. Borcard, D., P. Legendre, and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  4. Brown, J.H., M.V. Lomolino. 1998. Biogeography. Sinauer Associates, Sunderland.Google Scholar
  5. Carr, D., N. Lewin-Koh and M. Maechler. 2011. hexbin: hexagonal binning routines. R package version 1.26.0.Google Scholar
  6. Culver, D., M. Christman, B. Sket and P. Trontelj. 2004. Sampling adequacy in an extreme environment: species richness patterns in Slovenian caves. Biodivers. Conserv. 13: 1209–1229.CrossRefGoogle Scholar
  7. Currie, D.J., G.G. Mittelbach, H.V. Cornell, R. Field, J.-F. Guégan, B. Hawkins, D.M. Kaufman, J.T. Kerr, T. Oberdorff, E. O’Brien and J.R.G. Turner. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7: 1121–1134.CrossRefGoogle Scholar
  8. Denslow, M.W., M.W. Palmer, Z.E. Murrell. 2010. Patterns of native and exotic vascular plant richness along an elevational gradient from sea level to the summit of the Appalachian Mountains, USA. J. Torrey Bot. Soc. 137: 67–80.CrossRefGoogle Scholar
  9. Feilhauer, H. and S. Schmidtlein. 2009. Mapping continuous fields of forest alpha and beta diversity. Appl. Veg. Sci. 12: 429–439.CrossRefGoogle Scholar
  10. Fridley, J.D., H. Qian, P.S. White, and M.W. Palmer. 2006. Plant species invasions along the latitudinal gradient in the United States: comment. Ecology 87: 3209–3213.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Geri, F., D. Rocchini and A. Chiarucci. 2010. Landscape metrics and topographical determinants of large-scale forest dynamics in a Mediterranean landscape. Landscape Urban Plan. 95: 46–53.CrossRefGoogle Scholar
  12. Gleason, H.A. 1922. On the relation between species and area. Ecology 3: 158–162.CrossRefGoogle Scholar
  13. Gillespie, T.W. 2005. Predicting woody-plant species richness in tropical dry forests: a case study from South Florida, USA. Ecol. Appl. 15: 27–37.CrossRefGoogle Scholar
  14. Gillespie, T.W., G.M. Foody, D. Rocchini, A.P. Giorgi and S. Saatchi. 2008. Measuring and modeling biodiversity from space. Progr. Phys. Geogr. 32: 203–221.CrossRefGoogle Scholar
  15. Gould, W. 2000. Remote sensing of vegetation, plant species richness, and regional biodiversity hot spots. Ecol. Appl. 10: 1861–1870.CrossRefGoogle Scholar
  16. Hardtle, W., G. von Oheimb and C. Westphal. 2003. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). Forest Ecol Manag. 182: 327–338.CrossRefGoogle Scholar
  17. He, K.S., J. Zhang. 2009. Testing the correlation between beta diversity and differences in productivity among global ecoregions, biomes, and biogeographical realms. Ecol. Inform. 4: 93–98.CrossRefGoogle Scholar
  18. He, K.S., J. Zhang and Q. Zhang, 2009. Linking variability in species composition and MODIS NDVI based on beta diversity measurements. Acta Oecol. 35: 14–21.CrossRefGoogle Scholar
  19. Hernandez-Stefanoni, J., J. Dupuy and M.A. Castillo-Santiago. 2009. Assessing species density and abundance of tropical trees from remotely sensed data and geostatistics. Appl. Veg. Sci. 12: 398–414.CrossRefGoogle Scholar
  20. Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao and L.G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83: 195–213.CrossRefGoogle Scholar
  21. Lechner, A.M., W.T. Langford, S.D. Jones, S.A. Bekessy and A. Gordon. 2012. Investigating species–environment relationships at multiple scales: Differentiating between intrinsic scale and the modifiable areal unit problem. Ecol. Complex. 11: 91–102.CrossRefGoogle Scholar
  22. Legendre, P., M.R.T. Dale, M.-J. Fortin, J. Gurevitch, M. Hohn and D. Myers. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601–615.CrossRefGoogle Scholar
  23. Legendre, P. and L. Legendre. 1998. Numerical Ecology. Second edition, Elsevier Science, Amsterdam, NL.Google Scholar
  24. Lewin-Koh, N. 2011. Hexagon Binning: an Overview. Free book at: http://project.management6.com/Hexagon-Binning-an-Overview-pdf-e15305.pdfGoogle Scholar
  25. Lobo, J.M., J.-P. Lumaret and P. Jay-Robert. 2002. Modelling the species richness distribution of French dung beetles (Coleoptera, Scarabaeidae) and delimiting the predictive capacity of different groups of explanatory variables. Global Ecol. Biogeogr. 11: 265–277.CrossRefGoogle Scholar
  26. Neteler, M., M.H. Bowman, M. Landa and M. Metz. 2012. GRASS GIS: a multi-purpose Open Source GIS. Environ. Model. Software 31: 124–130.CrossRefGoogle Scholar
  27. Neteler, M. and H. Mitasova. 2008. Open Source GIS: A GRASS GIS Approach. The International Series in Engineering and Computer Science, Third Edition. Springer, New York.CrossRefGoogle Scholar
  28. Oindo, B. and A. Skidmore. 2002. Interannual variability of NDVI and species richness in Kenya. Int. J. Remote Sens. 23: 285–298.CrossRefGoogle Scholar
  29. Oldeland, J., D. Wesuls, D. Rocchini, M. Schmidt and N. Jürgens. 2010. Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? Ecol. Indicators 10: 390–396.CrossRefGoogle Scholar
  30. Oksanen, J., F. Guillaume Blanchet, R. Kindt. P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2012. vegan: Community Ecology Package. R package version 2.0-5. http://CRAN.R-project.org/package=vegan.Google Scholar
  31. Orlóci, L., M. Anand, and V.D. Pillar. 2002. Biodiversity analysis: issues, concepts, techniques. Community Ecol. 3: 217–236.CrossRefGoogle Scholar
  32. Palmer, M.W. 2005. Temporal trends of exotic species richness in North American floras: an overview. EcoScience 12: 386–390.CrossRefGoogle Scholar
  33. Palmer. M.W. 2006. Scale dependence of native and alien species richness in North American floras. Preslia 78: 427–436.Google Scholar
  34. Palmer, M.W. 2007. Species-area curves and the geometry of nature. In: D. Storch, P. A. Marquet and J. H. Brown (eds.), Scaling Biodiversity. Cambridge University Press, Cambridge. pp.15–31.Google Scholar
  35. Palmer, M.W., P. Earls, B.W. Hoagland, P.S. White and T. Wohlgemuth. 2002. Quantitative tools for perfecting species lists. Environmetrics 13: 121–137.CrossRefGoogle Scholar
  36. Palmer, M.W., D. McGlinn and J. Fridley. 2008. Artifacts and artifictions in biodiversity research. Folia Geobot. 43: 245–257.CrossRefGoogle Scholar
  37. Palmer, M.W. and J.C. Richardson. 2012. Biodiversity data in the Information Age: Do 21st Century floras make the grade? Castanea 77: 46–59.CrossRefGoogle Scholar
  38. Palmer, M.W. and P. White. 1994. Scale dependence and species-area relationship. The Amer. Nat. 144: 717–740.Google Scholar
  39. Palmer, M.W., T. Wohlgemuth, P. Earls, J.R. Arévalo and S.D. Thompson. 2000. Opportunities for long-term ecological research at the Tallgrass Prairie Preserve, Oklahoma. In: K. Lajtha and K. Vanderbilt (eds.), Cooperation in Long Term Ecological Research in Central and Eastern Europe. Proceedings of ILTER Regional Workshop, Budapest, Hungary, 22–25 June, 1999, pp. 123–128.Google Scholar
  40. Parviainen, M., M. Luoto and R. Heikkinen. 2009. The role of local and landscape level measures of greenness in modelling boreal plant species richness. Ecol. Model. 220: 2690–2701.CrossRefGoogle Scholar
  41. Qian, H., J.D. Fridley and M.W. Palmer. 2007. The latitudinal gradient of species-area relationships for vascular plants of North America. Amer. Nat. 170: 690–701.CrossRefGoogle Scholar
  42. R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (http://www.R-project.org,).Google Scholar
  43. Ricotta, C. 2005. Through the jungle of biological diversity. Acta Biotheor. 53: 29–38.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Rocchini, D. 2007. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens. Environ. 111: 423–434.CrossRefGoogle Scholar
  45. Rocchini, D., S. Andreini Butini and A. Chiarucci. 2005. Maximizing plant species inventory efficiency by means of remotely sensed spectral distances. Global Ecol. Biogeogr. 14: 431–437.CrossRefGoogle Scholar
  46. Rocchini, D., D. McGlinn, C. Ricotta, M. Neteler and T. Wohlgemuth. 2011. Landscape complexity and spatial scale influence the relationship between remotely sensed spectral diversity and survey based plant species richness. J. Veg. Sci. 22: 688–698.CrossRefGoogle Scholar
  47. Rocchini, D. and M. Neteler. 2012. Let the four freedoms paradigm apply to ecology. Trends Ecol. Evol. 27: 310–311.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Stanton, M.C. and P.J. Diggle. 2013. Geostatistical analysis of binomial data: generalised linear or transformed Gaussian modelling? Environmetrics 24: 158–171.CrossRefGoogle Scholar
  49. Waser, L., S. Stofer, M. Schwarz, M. Kchler, E. Ivits and C. Scheidegger. 2004. Prediction of biodiversity: regression of lichen species richness on remote sensing data. Community Ecol. 5: 121–134.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • D. Rocchini
    • 1
    Email author
  • L. Dadalt
    • 2
  • L. Delucchi
    • 1
  • M. Neteler
    • 1
  • M. W. Palmer
    • 2
  1. 1.Department of Biodiversity and Molecular Ecology, GIS and Remote Sensing UnitFondazione Edmund Mach, Research and Innovation CentreS. Michele all’Adige (TN)Italy
  2. 2.Department of BotanyOklahoma State UniversityStillwaterUSA

Personalised recommendations