Disentangling the role of remotely sensed spectral heterogeneity as a proxy for North American plant species richness
Abstract
Due to the difficulties of field-based species data collection at wide spatial scales, remotely sensed spectral diversity has been advocated as one of the most effective proxies of ecosystem and species diversity. It is widely accepted that the relationship between species and spectral diversity is scale dependent. However, few studies have evaluated the impacts of scale on species diversity estimates from remote sensing data. In this paper we tested the species versus spectral relationship over very large scales (extents) with a varying spatial grain using floristic data of North America. Spectral diversity explained a low amount of variance while spatial extent of the sampling units (floras) explained a high amount of variance based on results from our variance partitioning analyses. This leads to the conclusion that spectral diversity must be carefully related to species diversity, explicitly taking into account potential area effects.
Keywords
Area effects Species diversity Spectral variation hypothesis Variance partitioning.Abbreviation
- MODIS
Moderate Resolution Imaging Spectrometer
- NDVI
Normalized Difference Vegetation Index
Preview
Unable to display preview. Download preview PDF.
Supplementary material
References
- Arrhenius, O. 1921. Species and area. J. Ecol. 9: 95–99.CrossRefGoogle Scholar
- Bino, G., N. Levin, S. Darawshi, N. van der Hal, A. Reich-Solomon and S. Kark. 2008. Landsat derived NDVI and spectral unmixing accurately predict bird species richness patterns in an urban landscape. Internat. J. Remote Sens. 29: 3675–3700.CrossRefGoogle Scholar
- Borcard, D., P. Legendre, and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
- Brown, J.H., M.V. Lomolino. 1998. Biogeography. Sinauer Associates, Sunderland.Google Scholar
- Carr, D., N. Lewin-Koh and M. Maechler. 2011. hexbin: hexagonal binning routines. R package version 1.26.0.Google Scholar
- Culver, D., M. Christman, B. Sket and P. Trontelj. 2004. Sampling adequacy in an extreme environment: species richness patterns in Slovenian caves. Biodivers. Conserv. 13: 1209–1229.CrossRefGoogle Scholar
- Currie, D.J., G.G. Mittelbach, H.V. Cornell, R. Field, J.-F. Guégan, B. Hawkins, D.M. Kaufman, J.T. Kerr, T. Oberdorff, E. O’Brien and J.R.G. Turner. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7: 1121–1134.CrossRefGoogle Scholar
- Denslow, M.W., M.W. Palmer, Z.E. Murrell. 2010. Patterns of native and exotic vascular plant richness along an elevational gradient from sea level to the summit of the Appalachian Mountains, USA. J. Torrey Bot. Soc. 137: 67–80.CrossRefGoogle Scholar
- Feilhauer, H. and S. Schmidtlein. 2009. Mapping continuous fields of forest alpha and beta diversity. Appl. Veg. Sci. 12: 429–439.CrossRefGoogle Scholar
- Fridley, J.D., H. Qian, P.S. White, and M.W. Palmer. 2006. Plant species invasions along the latitudinal gradient in the United States: comment. Ecology 87: 3209–3213.PubMedCrossRefPubMedCentralGoogle Scholar
- Geri, F., D. Rocchini and A. Chiarucci. 2010. Landscape metrics and topographical determinants of large-scale forest dynamics in a Mediterranean landscape. Landscape Urban Plan. 95: 46–53.CrossRefGoogle Scholar
- Gleason, H.A. 1922. On the relation between species and area. Ecology 3: 158–162.CrossRefGoogle Scholar
- Gillespie, T.W. 2005. Predicting woody-plant species richness in tropical dry forests: a case study from South Florida, USA. Ecol. Appl. 15: 27–37.CrossRefGoogle Scholar
- Gillespie, T.W., G.M. Foody, D. Rocchini, A.P. Giorgi and S. Saatchi. 2008. Measuring and modeling biodiversity from space. Progr. Phys. Geogr. 32: 203–221.CrossRefGoogle Scholar
- Gould, W. 2000. Remote sensing of vegetation, plant species richness, and regional biodiversity hot spots. Ecol. Appl. 10: 1861–1870.CrossRefGoogle Scholar
- Hardtle, W., G. von Oheimb and C. Westphal. 2003. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). Forest Ecol Manag. 182: 327–338.CrossRefGoogle Scholar
- He, K.S., J. Zhang. 2009. Testing the correlation between beta diversity and differences in productivity among global ecoregions, biomes, and biogeographical realms. Ecol. Inform. 4: 93–98.CrossRefGoogle Scholar
- He, K.S., J. Zhang and Q. Zhang, 2009. Linking variability in species composition and MODIS NDVI based on beta diversity measurements. Acta Oecol. 35: 14–21.CrossRefGoogle Scholar
- Hernandez-Stefanoni, J., J. Dupuy and M.A. Castillo-Santiago. 2009. Assessing species density and abundance of tropical trees from remotely sensed data and geostatistics. Appl. Veg. Sci. 12: 398–414.CrossRefGoogle Scholar
- Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao and L.G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83: 195–213.CrossRefGoogle Scholar
- Lechner, A.M., W.T. Langford, S.D. Jones, S.A. Bekessy and A. Gordon. 2012. Investigating species–environment relationships at multiple scales: Differentiating between intrinsic scale and the modifiable areal unit problem. Ecol. Complex. 11: 91–102.CrossRefGoogle Scholar
- Legendre, P., M.R.T. Dale, M.-J. Fortin, J. Gurevitch, M. Hohn and D. Myers. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601–615.CrossRefGoogle Scholar
- Legendre, P. and L. Legendre. 1998. Numerical Ecology. Second edition, Elsevier Science, Amsterdam, NL.Google Scholar
- Lewin-Koh, N. 2011. Hexagon Binning: an Overview. Free book at: http://project.management6.com/Hexagon-Binning-an-Overview-pdf-e15305.pdfGoogle Scholar
- Lobo, J.M., J.-P. Lumaret and P. Jay-Robert. 2002. Modelling the species richness distribution of French dung beetles (Coleoptera, Scarabaeidae) and delimiting the predictive capacity of different groups of explanatory variables. Global Ecol. Biogeogr. 11: 265–277.CrossRefGoogle Scholar
- Neteler, M., M.H. Bowman, M. Landa and M. Metz. 2012. GRASS GIS: a multi-purpose Open Source GIS. Environ. Model. Software 31: 124–130.CrossRefGoogle Scholar
- Neteler, M. and H. Mitasova. 2008. Open Source GIS: A GRASS GIS Approach. The International Series in Engineering and Computer Science, Third Edition. Springer, New York.CrossRefGoogle Scholar
- Oindo, B. and A. Skidmore. 2002. Interannual variability of NDVI and species richness in Kenya. Int. J. Remote Sens. 23: 285–298.CrossRefGoogle Scholar
- Oldeland, J., D. Wesuls, D. Rocchini, M. Schmidt and N. Jürgens. 2010. Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? Ecol. Indicators 10: 390–396.CrossRefGoogle Scholar
- Oksanen, J., F. Guillaume Blanchet, R. Kindt. P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2012. vegan: Community Ecology Package. R package version 2.0-5. http://CRAN.R-project.org/package=vegan.Google Scholar
- Orlóci, L., M. Anand, and V.D. Pillar. 2002. Biodiversity analysis: issues, concepts, techniques. Community Ecol. 3: 217–236.CrossRefGoogle Scholar
- Palmer, M.W. 2005. Temporal trends of exotic species richness in North American floras: an overview. EcoScience 12: 386–390.CrossRefGoogle Scholar
- Palmer. M.W. 2006. Scale dependence of native and alien species richness in North American floras. Preslia 78: 427–436.Google Scholar
- Palmer, M.W. 2007. Species-area curves and the geometry of nature. In: D. Storch, P. A. Marquet and J. H. Brown (eds.), Scaling Biodiversity. Cambridge University Press, Cambridge. pp.15–31.Google Scholar
- Palmer, M.W., P. Earls, B.W. Hoagland, P.S. White and T. Wohlgemuth. 2002. Quantitative tools for perfecting species lists. Environmetrics 13: 121–137.CrossRefGoogle Scholar
- Palmer, M.W., D. McGlinn and J. Fridley. 2008. Artifacts and artifictions in biodiversity research. Folia Geobot. 43: 245–257.CrossRefGoogle Scholar
- Palmer, M.W. and J.C. Richardson. 2012. Biodiversity data in the Information Age: Do 21st Century floras make the grade? Castanea 77: 46–59.CrossRefGoogle Scholar
- Palmer, M.W. and P. White. 1994. Scale dependence and species-area relationship. The Amer. Nat. 144: 717–740.Google Scholar
- Palmer, M.W., T. Wohlgemuth, P. Earls, J.R. Arévalo and S.D. Thompson. 2000. Opportunities for long-term ecological research at the Tallgrass Prairie Preserve, Oklahoma. In: K. Lajtha and K. Vanderbilt (eds.), Cooperation in Long Term Ecological Research in Central and Eastern Europe. Proceedings of ILTER Regional Workshop, Budapest, Hungary, 22–25 June, 1999, pp. 123–128.Google Scholar
- Parviainen, M., M. Luoto and R. Heikkinen. 2009. The role of local and landscape level measures of greenness in modelling boreal plant species richness. Ecol. Model. 220: 2690–2701.CrossRefGoogle Scholar
- Qian, H., J.D. Fridley and M.W. Palmer. 2007. The latitudinal gradient of species-area relationships for vascular plants of North America. Amer. Nat. 170: 690–701.CrossRefGoogle Scholar
- R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (http://www.R-project.org,).Google Scholar
- Ricotta, C. 2005. Through the jungle of biological diversity. Acta Biotheor. 53: 29–38.PubMedCrossRefPubMedCentralGoogle Scholar
- Rocchini, D. 2007. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens. Environ. 111: 423–434.CrossRefGoogle Scholar
- Rocchini, D., S. Andreini Butini and A. Chiarucci. 2005. Maximizing plant species inventory efficiency by means of remotely sensed spectral distances. Global Ecol. Biogeogr. 14: 431–437.CrossRefGoogle Scholar
- Rocchini, D., D. McGlinn, C. Ricotta, M. Neteler and T. Wohlgemuth. 2011. Landscape complexity and spatial scale influence the relationship between remotely sensed spectral diversity and survey based plant species richness. J. Veg. Sci. 22: 688–698.CrossRefGoogle Scholar
- Rocchini, D. and M. Neteler. 2012. Let the four freedoms paradigm apply to ecology. Trends Ecol. Evol. 27: 310–311.PubMedCrossRefPubMedCentralGoogle Scholar
- Stanton, M.C. and P.J. Diggle. 2013. Geostatistical analysis of binomial data: generalised linear or transformed Gaussian modelling? Environmetrics 24: 158–171.CrossRefGoogle Scholar
- Waser, L., S. Stofer, M. Schwarz, M. Kchler, E. Ivits and C. Scheidegger. 2004. Prediction of biodiversity: regression of lichen species richness on remote sensing data. Community Ecol. 5: 121–134.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.