Combinatorial functional diversity: an information theoretical approach

Abstract

A new approach to the measurement of functional diversity based on two-state nominal traits is developed from the florula diversity concept of P. Juhász-Nagy. For evaluating functional diversity of an assemblage, first a traits by species matrix is compiled. Various information theory functions are used to examine structural properties in this matrix, including the frequency distribution of trait combinations. The method is illustrated by actual examples, the first from plant communities prone to fire in Spain, and the second from running water invertebrate assemblages in Hungary. The results suggest that of the various functions used the standardized joint entropy, termed combinatorial functional evenness supplies most meaningful results. In plant communities, high fire recurrence decreased combinatorial functional evenness, while this measure for freshwater assemblages was uncorrelated with stream width and negatively correlated with the degree of human impact. Stream width is negatively correlated with the number of manifested functional combinations. In both case studies, combinatorial functional evenness has an inverse relationship to species richness – i.e., fewer species have a larger chance to produce equiprobable functional combinations.

Abbreviations

CFD:

Combinatorial functional diversity

CFE:

Combinatorial functional evenness

CFR:

Combinatorial functional richness

FA:

Functional associatum

FD:

Functional diversity

FH:

Functional heterogeneity

References

  1. Ackerly, D.D. 2004. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 75: 25–44.

    Article  Google Scholar 

  2. Cornwell, W.K., Schwilk, D.W. and Ackerly, D.D. 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465–1471.

    Article  Google Scholar 

  3. de Bello, F., Lavergne, S., Meynard, C.N., Lepš, J. and Thuiller, W. 2010. The partitioning of diversity: showing Theseus a way out of the labyrinth. J. Veg. Sci. 21: 992–1000.

    Article  Google Scholar 

  4. Erős, T., Heino, J., Schmera, D. and Rask, M. 2009. Characterising functional trait diversity and trait-environment relationships in fish assemblages of boreal lakes. Freshw. Biol. 54: 1788–1803.

    Article  Google Scholar 

  5. Gross, N., Suding, K.N. and Lavorel, S. 2007. Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. J. Veg. Sci. 18: 289–300.

    Article  Google Scholar 

  6. Heino, J. 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshw. Biol. 50: 1578–1587.

    Article  Google Scholar 

  7. Juhász-Nagy, P. 1984. Spatial dependence of plant populations. Part 2. A family of new models. Acta Bot. Acad. Sci. Hung. 30: 363–402.

    Google Scholar 

  8. Juhász-Nagy, P. 1993. Notes on compositional diversity. Hydrobiologia 249: 173–182.

    Article  Google Scholar 

  9. Juhász-Nagy, P. and Podani, J. 1983. Information theory methods for the study of spatial processes and succession. Vegetatio 51:129–140.

    Article  Google Scholar 

  10. Kattge, J. et al. 2011. TRY – a global database of plant traits. Global Change Biol. 17: 2905–2935.

    Article  Google Scholar 

  11. Kühner, A. and Kleyer, M. 2008. A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. J. Veg. Sci. 19: 681–692.

    Article  Google Scholar 

  12. Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D., Dorrough, J., Berman, S., Quetier, F., Thebault, A. and Bonis, A. 2008. Assessing functional diversity in the field - methodology matters! Funct. Ecol. 22: 134–147.

    Google Scholar 

  13. Magurran, A.E. 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton.

    Book  Google Scholar 

  14. Maire, V., Gross, N., Wirth, C., Pontes, L.D.S., Proulx, R., Börger, L., Soussana, J-F. and Loualt, F. 2012. Habitat-filtering and niche differentiation jointly determine species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196: 497–509.

    Article  Google Scholar 

  15. Mason, N.W.H., Mouillot, D., Lee, W.G. and Wilson, J.B. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Article  Google Scholar 

  16. McGill, B.J., Enquist, B.J., Weiher, E. and Westoby, M. 2006. Rebuilding community ecology from functional traits. TREE 21: 178–185.

    PubMed  Google Scholar 

  17. Moog, O. 1995. Fauna Aquatica Austriaca. Lieferung Mai/95. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Wien.

    Google Scholar 

  18. Mouchet, M., Villéger, S., Mason, N.W.H. and Mouillot, D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24: 867–876.

    Article  Google Scholar 

  19. Mouillot, D., Culioli, J.M., Pelletier, D. and Tomasini, J.A. 2008. Do we protetct biological originality in protected areas? A new index and an application to the Bonifacio Strait Natural Reserve. Biol. Cons. 141: 1569–1580.

    Article  Google Scholar 

  20. Orlóci, L. 1969. Information theory models for hierarchic and non-hierarchic classifications. In: Cole, A.D. (ed.), Numerical Taxonomy. Academic, London. pp. 148–164.

    Google Scholar 

  21. Orlóci, L. 1991. On character-based plant community analysis: choice, arrangement, comparison. In: Feoli, E. and Orlóci, L. (eds.), Computer Assisted Vegetation Analysis. Kluwer, Dordrecht. pp. 81– 86.

    Google Scholar 

  22. Pausas, J.G. and Verdú, M. 2008. Fire reduces morphospace occupation in plant communities. Ecology 89: 2181–2186.

    Article  Google Scholar 

  23. Pausas, J.G. and Verdú, M. 2010. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. BioScience 60: 614–625.

    Article  Google Scholar 

  24. Pavoine, S., Gasc, A., Bonsall, M.B. and Mason, N.W.M. 2013. Correlation between phylogenetic and functional diversity: mathematical artefacts or true ecological and evolutionary process? J. Veg. Sci, 24: 781–793.

    Article  Google Scholar 

  25. Peet, R.K. 1974. The measurement of species diversity. Ann. Rev. Ecol. Syst. 5: 285–307.

    Article  Google Scholar 

  26. Petchey, O.L. and Gaston, K.J. 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9: 741–758.

    Article  Google Scholar 

  27. Pillar, V.D. and Orlóci, L. 2004. Character-Based Community Analysis: The Theory and an Application Program. Electronic Edition available at https://doi.org/ecoqua.ecologia.ufrgs.br.

  28. Podani, J. 1993. SYN/TAX 5 User’s Manual. Scientia, Budapest

    Google Scholar 

  29. Podani J. 2001. SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. User’s Manual. Scientia, Budapest.

    Google Scholar 

  30. Podani, J. 2009. Convex hulls, habitat filtering, and functional diversity: mathematical elegance versus ecological interpretability. Community Ecol. 10: 244–250.

    Article  Google Scholar 

  31. Podani, J. and Schmera, D. 2006. On dendrogram-based measures of functional diversity. Oikos 115: 179–185.

    Article  Google Scholar 

  32. Poff, N.L., Olden, J.D., Vieira, N.K.M., Finn, D.S., Simmons, M.P. and Kondratieff, B.C. 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. North Amer. Benthological Soc. 25: 730–755.

    Article  Google Scholar 

  33. Ricotta, C. 2003. On parametric evenness measures. J. Theor. Biol. 222: 189–197.

    Google Scholar 

  34. Ricotta, C. and Moretti, M. 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181–188.

    Google Scholar 

  35. Roscher, C., Schumacher, J., Gubsch, M., Lipowsky, A., Weigelt, A., Buchmann, N., Schmid, B. and Schulze, E.D. 2012. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7(5): e36760. doi:10.1371/journal.pone. 0036760

    CAS  Article  Google Scholar 

  36. Schmera, D. and Baur, B. 2011. Testing a typology system of running waters for conservation planning in Hungary. Hydrobiologia 665: 183–194.

    Article  Google Scholar 

  37. Schmera, D., Erős, T. and Podani, J. 2009. A measure for assessing functional diversity in ecological communities. Aquat. Ecol. 43: 157–167.

    Article  Google Scholar 

  38. Smith, B. and Wilson, J.B. 1996. A consumer’s guide to evenness indices. Oikos 76: 70–82.

    Article  Google Scholar 

  39. Taillie, C. 1979. Species equitability: a comparative approach. In: Grassle, J.F., Patil, G.P., Smith, W.K. and Taillie, C. (eds.), Ecological Diversity in Theory and Practice. International Cooperative Publishing House, Fairland, MD, pp. 51–62.

    Google Scholar 

  40. Troussellier, M. and Legendre, P. 1981. A functional diversity index for microbial ecology. Microbial. Ecol. 7: 283–292.

    CAS  Article  Google Scholar 

  41. Tuomisto, A. 2012. An updated consumer’s guide to evenness and related indices. Oikos 121: 1203–1218.

    Article  Google Scholar 

  42. Verdú, M. and Pausas, J.G. 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J. Ecol. 95: 1316–323

    Article  Google Scholar 

  43. Villéger, S., Mason, N.W.H. and Mouillot, D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    Article  Google Scholar 

  44. Whittaker, R.H. 1965. Dominance and diversity in land plant communities. Science 147: 250–260.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Podani.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Podani, J., Ricotta, C., Pausas, J.G. et al. Combinatorial functional diversity: an information theoretical approach. COMMUNITY ECOLOGY 14, 180–188 (2013). https://doi.org/10.1556/ComEc.14.2013.2.8

Download citation

Keywords

  • Evenness
  • Fire
  • Functional traits
  • Invertebrates
  • Species richness
  • Vegetation