Advertisement

Community Ecology

, Volume 14, Issue 1, pp 110–120 | Cite as

Differential responses of ecosystem components to a low-intensity fire in a Mediterranean forest: a three-year case study

  • S. García-TejeroEmail author
  • Á. Taboada
  • R. Tárrega
  • J. M. Salgado
  • E. Marcos
Article
  • 1 Downloads

Abstract

Mediterranean forests are especially prone to fire, a periodic disturbance that affects all the ecosystem components in different ways. Gathering knowledge on the particular responses and rate of recovery of multiple ecosystem components following a wildfire is crucial to reliably evaluate its consequences on biodiversity. Using eight sampling transects, we studied the changes in four ecosystem components (topsoil, plants, carabids, and staphylinids) during three years after a spring wildfire in a Quercus pyrenaica forest; and compared them with the surrounding unburnt forest (hereafter control). We found great variety of responses to fire suggesting each component may deal with this recurring disturbance via different adaptations, and that the time spent to recover to pre-disturbance conditions depends on the group of focus. Topsoil characteristics were highly variable and minor differences were found between burnt and control transects. Plant community was considerably affected by fire but rapidly recovered exceeding the control forest in species richness and cover, partly due to proliferation of annual herbs. However, plant species composition differed between burnt and control forests during the whole study period. Carabid beetles were more abundant and richer in species in the burnt forest, thanks to the arrival of seed predators favoured by post-fire drier and warmer conditions. Staphylinid beetle composition differed between control and burnt transects during the whole period, although their abundance was strongly variable. Distinct post-fire plant, carabid and staphylinid species composition suggests scattered low-intensity wildfires in this region may help to maintain habitat heterogeneity benefiting biodiversity at the landscape scale.

Keywords

Carabids Plant community Quercus pyrenaica forest Staphylinids Topsoil Wildfire 

Abbreviations

B

Burnt transect

C

Control transect

GLMM

Generalised linear mixed model

PCA

Principal components analysis

PERMANOVA

Permutational multivariate analysis of variance

RDA

Redundancy analysis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2013_14010110_MOESM1_ESM.pdf (197 kb)
Supplementary material, approximately 202 KB.

References

  1. Ahlgren, I.F. 1974. The effect of fire on soil organisms. In: T.T. Koz-lowski and C.E. Ahlgren (eds.), Fire and Ecosystems. Academic Press, New York. pp. 47–72.Google Scholar
  2. Álvarez, R., A. Muñoz, X.M. Pesqueira, J. García-Duro, O. Reyes and M. Casal. 2009. Spatial and temporal patterns in structure and diversity of Mediterranean forest of Quercus pyrenaica in relation to fire. Forest Ecol. Manag. 257:1596–1602.CrossRefGoogle Scholar
  3. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26:32–46.Google Scholar
  4. Anderson, M.J. 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand.Google Scholar
  5. Antunes, S.C., N. Curado, B.B. Castro and F. Gonçalves. 2009. Short-term recovery of soil functional parameters and edaphic macro-arthropod community after a forest fire. J. Soils Sediments 9:267–278.CrossRefGoogle Scholar
  6. Blondel, J. and J. Aronson. 1999. Biology and Wildlife of the Mediterranean Region. Oxford University Press, Oxford.Google Scholar
  7. Bohac, J. 1999. Staphylinid beetles as bioindicators. Agric. Ecosyst. Environ. 74:357–372.CrossRefGoogle Scholar
  8. Bond, W.J. and B.W. van Wilgen. 1996. Fire and Plants. Chapman & Hall, London.CrossRefGoogle Scholar
  9. Buddle, C.M., D.W. Langor, G.R. Pohl and J.R. Spence. 2006. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Conserv. 128:346–357.CrossRefGoogle Scholar
  10. Buhk, C., A. Meyn and A. Jentsch. 2007. The challenge of plant regeneration after fire in the Mediterranean Basin: scientific gaps in our knowledge on plant strategies and evolution of traits. Plant Ecol. 192:1–19.CrossRefGoogle Scholar
  11. Calvo, L., R. Tárrega and E. Luis. 1991. Regeneration in Quercus pyrenaica ecosystems after surface fires. Int. J. Wildland Fire 1:205–210.CrossRefGoogle Scholar
  12. Calvo, L., R. Tárrega and E. Luis. 1999. Post-fire succession in two Quercus pyrenaica communities with different disturbance histories. Ann. For. Sci. 56:441–447.CrossRefGoogle Scholar
  13. Calvo, L., R. Tárrega and E. Luis. 2002. Secondary succession after perturbations in a shrubland community. Acta Oecol. 23:393–404.CrossRefGoogle Scholar
  14. Casal, M., M. Basanta, F. González, R. Montero, J. Pereiras and A. Puentes. 1990. Post-fire dynamics in experimental transects of shrubland ecosystems in Galicia (NW Spain). In: J.G. Goldamer and M.J. Jenkins (eds.), Fire in Ecosystem Dynamics. SPB Academic Publishing, The Hague. pp. 33–42.Google Scholar
  15. Cerdá, A. and J. Mataix-Solera. 2009. Efectos de los incendios fore-stales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Cátedra Divulgación de la Ciencia, Universitat de València.Google Scholar
  16. Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Costa, M., C. Morla and H. Sainz (eds.) 1998. Los Bosques Ibéricos. Una Interpretación Geobotánica. Planeta, Barcelona.Google Scholar
  18. Dahlberg, A. 2002. Effects of fire on ectomycorrhizal fungi in Fen-noscandian boreal forests. Silva Fenn. 36:69–80.CrossRefGoogle Scholar
  19. Debano, L.F., P.H. Dunn and C.E. Conrad. 1977. Fire’s effects on physical and chemical properties of chaparral soils. In: Proc. of the Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems. USDA For Serv Gen Tech rep WO-3 Government Printing Office, Was-ington DC. pp. 65–74.Google Scholar
  20. Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345–367.Google Scholar
  21. Elia, M., R. Lafortezza, E. Tarasco, G. Colangelo and G. Sanesi. 2012. The spatial and temporal effects of fire on insect abundance in Mediterranean forest ecosystems. Forest Ecol. Manag. 263:262–267.CrossRefGoogle Scholar
  22. Fattorini, S. 2010. Effects of fire on tenebrionid communities of a Pinus pinea plantation: a case study in a Mediterranean site. Bio-divers. Conserv. 19:1237–1250.CrossRefGoogle Scholar
  23. Ferran, A., W. Delitti and V.R. Vallejo. 2005. Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): II. Plant and soil nutrients. Plant Ecol. 177:71–83.CrossRefGoogle Scholar
  24. Gandhi, K.J.K., J.R. Spence, D.W. Langor and L.E. Morgantini. 2001. Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Biol. Conserv. 102:131–141.CrossRefGoogle Scholar
  25. García-Villanueva, J.A., V. Ena, R. Tárrega and G. Mediavilla. 1998. Recolonization of two burnt Quercus pyrenaica ecosystems by Coleoptera. Int. J. Wildland Fire 8(1):21–27.CrossRefGoogle Scholar
  26. Gimeno-García, E., V. Andreu and J.L. Rubio. 2004. Spatial patterns of soil temperatures during experimental fires. Geoderma 118:17–38.CrossRefGoogle Scholar
  27. Gongalsky, K.B., F. Midtgaard and H.J. Overgaard. 2006. Effects of prescribed forest burning on carabid beetles (Coleoptera: Carabidae): a case study in south-eastern Norway. Entomol. Fenn. 17:325–333.Google Scholar
  28. Guillemain, M., M. Loreau and T. Daufresne. 1997. Relationships between the regional distribution of carabid beetles (Coleoptera, Carabidae) and the abundance of their potential prey. Acta Oe-col. 18(4):465–483.CrossRefGoogle Scholar
  29. Hanes, T. 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr. 41:27–42.CrossRefGoogle Scholar
  30. Hjältén, J., H. Gibb and J.P. Ball. 2010. How will low-intensity burning after clear-felling affect mid-boreal insect assemblages? Basic Appl. Ecol. 11:363–372.CrossRefGoogle Scholar
  31. Holliday, N.J. 1991. Species responses of carabid beetles (Coleop-tera: Carabidae) during post-fire regeneration of boreal forest. Can. Entomol. 123:1369–1389.CrossRefGoogle Scholar
  32. Honek, A., Z. Martinkova and V. Jarosik. 2003. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100:531–544.CrossRefGoogle Scholar
  33. Jonson, D.W. and P.S. Curtis. 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecol. Manag. 140:227–238.CrossRefGoogle Scholar
  34. Keeley, J.E. 1986. Resilience of Mediterranean shrub communities to fires. In: B. Dell, A.J.M. Hopkins and B.B. Lamont (eds.), Resilience in Mediterranean-Type Ecosystems. Dr W Junk Publishers, Dordrecht. pp. 95–112.Google Scholar
  35. Keeley, J.E., C.J. Fotheringham and M. Baer-Keeley. 2005. Factors affecting plant diversity during post-fire recovery and succes- sion of Mediterranean-climate shrublands in California, USA. Divers. Distrib. 11:525–537.CrossRefGoogle Scholar
  36. Koch, K. 1989. Die Käfer Mitteleuropas. Ökologie Bd 1. Goecke & Evers Verlag, Krefeld.Google Scholar
  37. Legendre, P. and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Luis, E. and R. Tárrega. 1993. Studies on post-fire regeneration in Quercus pyrenaica ecosystems in León province (NW Spain). In: L. Trabaud and R. Prodon (eds.), Fire in Mediterranean Ecosystems. Brussels. pp. 69–85.Google Scholar
  39. Luis, E., R. Tárrega, L. Calvo, E. Marcos and L. Valbuena. 2000. History of landscape changes in northwest Spain according to land use and management. In: L. Trabaud (ed.), Life and Environment in the Mediterranean. WIT Press, Southampton. pp. 43–86.Google Scholar
  40. M.A.P.A. 1994. Métodos oficiales de análisis. Tomo III. Servicio de Publicaciones del Ministerio de Agricultura, Pesca y Alimen-tación, Madrid.Google Scholar
  41. Marcos, E. 1997. Procesos edáficos en comunidades vegetales al-teradas por el fuego. PhD. Thesis, University of León, Spain.Google Scholar
  42. Marcos, E., P. Alonso, R. Tárrega and E. Luis. 1995. Temporary changes of the edaphic characteristics during the first year of postfire regeneration in two oak groves. Arid Soil Res. Rehabilitation 9:289–297.CrossRefGoogle Scholar
  43. Marcos, E., R. Tárrega and E. Luis. 2007. Changes in a Humic Cam-bisol (100ºC-500ºC) under laboratory conditions: The significance of heating time. Geoderma 138:237–243.CrossRefGoogle Scholar
  44. Mataix-Solera, J., C. Guerrero, F. García-Orenes, G.M. Barcenas and M.P. Torres. 2009. Forest fire effects on soil microbiology. In: A. Cerdà and P.R. Robichaud (eds.), Fire effects on soils and restoration strategies. Science Publishers, Enfield. pp. 133–176.Google Scholar
  45. Muona, J. and I. Rutanen. 1994. The short-term impact of fire on the beetle fauna in boreal coniferous forest. Ann. Zool. Fenn. 31:109–121.Google Scholar
  46. Naveh, Z. 1994. The role of fire and its management in the conservation of Mediterranean ecosystems and landscapes. In: J.M. Moreno and W.C. Oechel (eds.), The role of Fire in Mediterranean Type Ecosystems. Springer-Verlag, New York. pp. 163–186.CrossRefGoogle Scholar
  47. Newton, A.F. Jr. 1984. Mycophagy in Staphylinoidea (Coleoptera). In: Q. Wheeler and M. Blackwell (eds.), Fungus-Insect Relationships. Perspectives in Ecology and Evolution. Columbia University Press, New York. pp. 302–353.Google Scholar
  48. Paquin, P. and D. Coderre. 1997. Deforestation and fire impact on edaphic insect larvae and other macroarthropods. Environ. En-tomol. 26(1):21–30.CrossRefGoogle Scholar
  49. Pausas, J.G., J. Llovet, A. Rodrigo and R. Vallejo. 2008. Are wildfires a disaster in the Mediterranean basin? – A review. Int. J. Wildland Fire 17:713–723.CrossRefGoogle Scholar
  50. Prieto-Fernández, A., M. Carballas and T. Carballas. 2004. Inorganic and organic N pools in soil burned or heated: immediate alterations and evolution after forest wildfires. Geoderma 121:291–306.CrossRefGoogle Scholar
  51. Pryke, J.S. and M.J. Samways. 2012. Importance of using many taxa and having adequate controls for monitoring impacts of fire for arthropod conservation. J. Insect Conserv. 16:177–185.CrossRefGoogle Scholar
  52. R Development Core Team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
  53. Rainio, J. and J. Niemelä. 2003. Ground beetles (Coleoptera: Carabi-dae) as bioindicators. Biodivers. Conserv. 12:487–506.CrossRefGoogle Scholar
  54. Reyes, O. and M. Casal. 2008. Regeneration models and plant regenerative types related to the intensity of fire in Atlantic shrubland and woodland species. J. Veg. Sci. 19:575–583.CrossRefGoogle Scholar
  55. Rodrigo, A., J. Retana and F.X. Picó. 2004. Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85:716–729.CrossRefGoogle Scholar
  56. Romanya, J., P. Casals and V.R. Vallejo. 1994. Effects of slash burning on soil phosphorus fractions and sorption and desorption of phosphorus. Forest Ecol. Manag. 65:89–103.CrossRefGoogle Scholar
  57. Samu, F., F. Kádár, G. Ónodi, M. Kertész, A. Szirányi, É. Szita, K. Fetykó, D. Neidert, E. Botos and V. Altbäcker. 2010. Differential ecological responses of two generalist arthropod groups, spiders and carabid beetles (Araneae, Carabidae), to the effects of wildfire. Community Ecol. 11:129–139.CrossRefGoogle Scholar
  58. Sánchez, J.R., V.J. Mangas, C. Ortiz and J. Bellot. 1994. Forest fire effect on soil chemical properties and runoff. In: M. Sala and J.L. Rubio (eds.), Soil Erosion and Degradation as a Consequence of Forest Fires. Geoforma Ediciones, Logroño. pp. 54–66.Google Scholar
  59. Taboada, A., D.J. Kotze, R. Tárrega and J.M. Salgado. 2006. Traditional forest management: Do carabid beetles respond to human-created vegetation structures in an oak mosaic landscape? Forest Ecol. Manag. 237:436–449.CrossRefGoogle Scholar
  60. Tárrega, R. and E. Luis. 1989. Forest fires and climatic features in León province. Fire effects on Quercus pyrenaica ecosystems. In: J.G. Goldamer and M.J. Jenkins (eds.), Fire in Ecosystem Dynamics. SPB Academic Publishing, The Hague. pp. 63–69.Google Scholar
  61. Tárrega, R., E. Luis and E. Marcos. 1996. Relationship between soil changes and plant succession in post-fire regeneration of Quer-cus pyrenaica ecosystems. Arid Soil Res. Rehabilitation 10:85–93.CrossRefGoogle Scholar
  62. Tárrega, R., L. Calvo, E. Marcos and A. Taboada. 2006. Forest structure and understory diversity in Quercus pyrenaica communities with different human uses and disturbances. Forest Ecol. Manag. 227:50–58.CrossRefGoogle Scholar
  63. Thiele, H.-U. 1977. Carabid Beetles in their Environment. Springer, New York.CrossRefGoogle Scholar
  64. Thomas, C.F.G., N.J. Brown and D.A. Kendall. 2006. Carabid movement and vegetation density: Implications for interpreting pitfall trap data from split-field trials. Agric. Ecosyst. Environ. 113:51–61.CrossRefGoogle Scholar
  65. Trabaud, L. 1983. The effects of different fire regimes on soil nutrient levels in Quercus coccifera garrigue. In: F.J. Kruger, D.T. Michell and J.U.M. Jarvis (eds.), Mediterranean-type Ecosystems: The Role of Nutrients. Springer-Verlag, Berlin.Google Scholar
  66. Trabaud, L. (ed.) 1987. The Role of Fire in Ecological Systems. SPB Academic Publishing. The Hague.Google Scholar
  67. Trabaud, L. and J. Lepart. 1980. Diversity and stability in garrigue ecosystems after fire. Vegetatio 43:49–57.CrossRefGoogle Scholar
  68. Úbeda, X., L. Outeiro, P. Pereira and A. Miguel. 2009. Estudios so-bre las consecuencias del fuego en las propiedades del suelo y la erosión en Catanluya. In: A. Cerdà and J. Mataix-Solera (eds.), Efectos de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Cát-edra Divulgación de la Ciencia. Universitat de València. pp. 327–353.Google Scholar
  69. Ukmar, E., C. Battisti, L. Luiselli and M.A. Bologna. 2007. The effects of fire on communities, guilds and species of breeding birds in burnt and control pinewoods in central Italy. Biodivers. Conserv. 16:3287–3300.CrossRefGoogle Scholar
  70. Wikars, L.-O. and J. Schimmel. 2001. Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecol. Manag. 141:189–200.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • S. García-Tejero
    • 1
    Email author
  • Á. Taboada
    • 1
    • 2
  • R. Tárrega
    • 1
  • J. M. Salgado
    • 3
  • E. Marcos
    • 1
  1. 1.Area of Ecology, Department of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
  2. 2.Institute of EcologyLeuphana University LüneburgLüneburgGermany
  3. 3.Department of Ecology and Animal BiologyUniversity of VigoVigoSpain

Personalised recommendations