Differential responses of ecosystem components to a low-intensity fire in a Mediterranean forest: a three-year case study
- 1 Downloads
Abstract
Mediterranean forests are especially prone to fire, a periodic disturbance that affects all the ecosystem components in different ways. Gathering knowledge on the particular responses and rate of recovery of multiple ecosystem components following a wildfire is crucial to reliably evaluate its consequences on biodiversity. Using eight sampling transects, we studied the changes in four ecosystem components (topsoil, plants, carabids, and staphylinids) during three years after a spring wildfire in a Quercus pyrenaica forest; and compared them with the surrounding unburnt forest (hereafter control). We found great variety of responses to fire suggesting each component may deal with this recurring disturbance via different adaptations, and that the time spent to recover to pre-disturbance conditions depends on the group of focus. Topsoil characteristics were highly variable and minor differences were found between burnt and control transects. Plant community was considerably affected by fire but rapidly recovered exceeding the control forest in species richness and cover, partly due to proliferation of annual herbs. However, plant species composition differed between burnt and control forests during the whole study period. Carabid beetles were more abundant and richer in species in the burnt forest, thanks to the arrival of seed predators favoured by post-fire drier and warmer conditions. Staphylinid beetle composition differed between control and burnt transects during the whole period, although their abundance was strongly variable. Distinct post-fire plant, carabid and staphylinid species composition suggests scattered low-intensity wildfires in this region may help to maintain habitat heterogeneity benefiting biodiversity at the landscape scale.
Keywords
Carabids Plant community Quercus pyrenaica forest Staphylinids Topsoil WildfireAbbreviations
- B
Burnt transect
- C
Control transect
- GLMM
Generalised linear mixed model
- PCA
Principal components analysis
- PERMANOVA
Permutational multivariate analysis of variance
- RDA
Redundancy analysis
Preview
Unable to display preview. Download preview PDF.
Supplementary material
References
- Ahlgren, I.F. 1974. The effect of fire on soil organisms. In: T.T. Koz-lowski and C.E. Ahlgren (eds.), Fire and Ecosystems. Academic Press, New York. pp. 47–72.Google Scholar
- Álvarez, R., A. Muñoz, X.M. Pesqueira, J. García-Duro, O. Reyes and M. Casal. 2009. Spatial and temporal patterns in structure and diversity of Mediterranean forest of Quercus pyrenaica in relation to fire. Forest Ecol. Manag. 257:1596–1602.CrossRefGoogle Scholar
- Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26:32–46.Google Scholar
- Anderson, M.J. 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand.Google Scholar
- Antunes, S.C., N. Curado, B.B. Castro and F. Gonçalves. 2009. Short-term recovery of soil functional parameters and edaphic macro-arthropod community after a forest fire. J. Soils Sediments 9:267–278.CrossRefGoogle Scholar
- Blondel, J. and J. Aronson. 1999. Biology and Wildlife of the Mediterranean Region. Oxford University Press, Oxford.Google Scholar
- Bohac, J. 1999. Staphylinid beetles as bioindicators. Agric. Ecosyst. Environ. 74:357–372.CrossRefGoogle Scholar
- Bond, W.J. and B.W. van Wilgen. 1996. Fire and Plants. Chapman & Hall, London.CrossRefGoogle Scholar
- Buddle, C.M., D.W. Langor, G.R. Pohl and J.R. Spence. 2006. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Conserv. 128:346–357.CrossRefGoogle Scholar
- Buhk, C., A. Meyn and A. Jentsch. 2007. The challenge of plant regeneration after fire in the Mediterranean Basin: scientific gaps in our knowledge on plant strategies and evolution of traits. Plant Ecol. 192:1–19.CrossRefGoogle Scholar
- Calvo, L., R. Tárrega and E. Luis. 1991. Regeneration in Quercus pyrenaica ecosystems after surface fires. Int. J. Wildland Fire 1:205–210.CrossRefGoogle Scholar
- Calvo, L., R. Tárrega and E. Luis. 1999. Post-fire succession in two Quercus pyrenaica communities with different disturbance histories. Ann. For. Sci. 56:441–447.CrossRefGoogle Scholar
- Calvo, L., R. Tárrega and E. Luis. 2002. Secondary succession after perturbations in a shrubland community. Acta Oecol. 23:393–404.CrossRefGoogle Scholar
- Casal, M., M. Basanta, F. González, R. Montero, J. Pereiras and A. Puentes. 1990. Post-fire dynamics in experimental transects of shrubland ecosystems in Galicia (NW Spain). In: J.G. Goldamer and M.J. Jenkins (eds.), Fire in Ecosystem Dynamics. SPB Academic Publishing, The Hague. pp. 33–42.Google Scholar
- Cerdá, A. and J. Mataix-Solera. 2009. Efectos de los incendios fore-stales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Cátedra Divulgación de la Ciencia, Universitat de València.Google Scholar
- Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10.CrossRefPubMedPubMedCentralGoogle Scholar
- Costa, M., C. Morla and H. Sainz (eds.) 1998. Los Bosques Ibéricos. Una Interpretación Geobotánica. Planeta, Barcelona.Google Scholar
- Dahlberg, A. 2002. Effects of fire on ectomycorrhizal fungi in Fen-noscandian boreal forests. Silva Fenn. 36:69–80.CrossRefGoogle Scholar
- Debano, L.F., P.H. Dunn and C.E. Conrad. 1977. Fire’s effects on physical and chemical properties of chaparral soils. In: Proc. of the Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems. USDA For Serv Gen Tech rep WO-3 Government Printing Office, Was-ington DC. pp. 65–74.Google Scholar
- Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345–367.Google Scholar
- Elia, M., R. Lafortezza, E. Tarasco, G. Colangelo and G. Sanesi. 2012. The spatial and temporal effects of fire on insect abundance in Mediterranean forest ecosystems. Forest Ecol. Manag. 263:262–267.CrossRefGoogle Scholar
- Fattorini, S. 2010. Effects of fire on tenebrionid communities of a Pinus pinea plantation: a case study in a Mediterranean site. Bio-divers. Conserv. 19:1237–1250.CrossRefGoogle Scholar
- Ferran, A., W. Delitti and V.R. Vallejo. 2005. Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): II. Plant and soil nutrients. Plant Ecol. 177:71–83.CrossRefGoogle Scholar
- Gandhi, K.J.K., J.R. Spence, D.W. Langor and L.E. Morgantini. 2001. Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Biol. Conserv. 102:131–141.CrossRefGoogle Scholar
- García-Villanueva, J.A., V. Ena, R. Tárrega and G. Mediavilla. 1998. Recolonization of two burnt Quercus pyrenaica ecosystems by Coleoptera. Int. J. Wildland Fire 8(1):21–27.CrossRefGoogle Scholar
- Gimeno-García, E., V. Andreu and J.L. Rubio. 2004. Spatial patterns of soil temperatures during experimental fires. Geoderma 118:17–38.CrossRefGoogle Scholar
- Gongalsky, K.B., F. Midtgaard and H.J. Overgaard. 2006. Effects of prescribed forest burning on carabid beetles (Coleoptera: Carabidae): a case study in south-eastern Norway. Entomol. Fenn. 17:325–333.Google Scholar
- Guillemain, M., M. Loreau and T. Daufresne. 1997. Relationships between the regional distribution of carabid beetles (Coleoptera, Carabidae) and the abundance of their potential prey. Acta Oe-col. 18(4):465–483.CrossRefGoogle Scholar
- Hanes, T. 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr. 41:27–42.CrossRefGoogle Scholar
- Hjältén, J., H. Gibb and J.P. Ball. 2010. How will low-intensity burning after clear-felling affect mid-boreal insect assemblages? Basic Appl. Ecol. 11:363–372.CrossRefGoogle Scholar
- Holliday, N.J. 1991. Species responses of carabid beetles (Coleop-tera: Carabidae) during post-fire regeneration of boreal forest. Can. Entomol. 123:1369–1389.CrossRefGoogle Scholar
- Honek, A., Z. Martinkova and V. Jarosik. 2003. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100:531–544.CrossRefGoogle Scholar
- Jonson, D.W. and P.S. Curtis. 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecol. Manag. 140:227–238.CrossRefGoogle Scholar
- Keeley, J.E. 1986. Resilience of Mediterranean shrub communities to fires. In: B. Dell, A.J.M. Hopkins and B.B. Lamont (eds.), Resilience in Mediterranean-Type Ecosystems. Dr W Junk Publishers, Dordrecht. pp. 95–112.Google Scholar
- Keeley, J.E., C.J. Fotheringham and M. Baer-Keeley. 2005. Factors affecting plant diversity during post-fire recovery and succes- sion of Mediterranean-climate shrublands in California, USA. Divers. Distrib. 11:525–537.CrossRefGoogle Scholar
- Koch, K. 1989. Die Käfer Mitteleuropas. Ökologie Bd 1. Goecke & Evers Verlag, Krefeld.Google Scholar
- Legendre, P. and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280.CrossRefPubMedPubMedCentralGoogle Scholar
- Luis, E. and R. Tárrega. 1993. Studies on post-fire regeneration in Quercus pyrenaica ecosystems in León province (NW Spain). In: L. Trabaud and R. Prodon (eds.), Fire in Mediterranean Ecosystems. Brussels. pp. 69–85.Google Scholar
- Luis, E., R. Tárrega, L. Calvo, E. Marcos and L. Valbuena. 2000. History of landscape changes in northwest Spain according to land use and management. In: L. Trabaud (ed.), Life and Environment in the Mediterranean. WIT Press, Southampton. pp. 43–86.Google Scholar
- M.A.P.A. 1994. Métodos oficiales de análisis. Tomo III. Servicio de Publicaciones del Ministerio de Agricultura, Pesca y Alimen-tación, Madrid.Google Scholar
- Marcos, E. 1997. Procesos edáficos en comunidades vegetales al-teradas por el fuego. PhD. Thesis, University of León, Spain.Google Scholar
- Marcos, E., P. Alonso, R. Tárrega and E. Luis. 1995. Temporary changes of the edaphic characteristics during the first year of postfire regeneration in two oak groves. Arid Soil Res. Rehabilitation 9:289–297.CrossRefGoogle Scholar
- Marcos, E., R. Tárrega and E. Luis. 2007. Changes in a Humic Cam-bisol (100ºC-500ºC) under laboratory conditions: The significance of heating time. Geoderma 138:237–243.CrossRefGoogle Scholar
- Mataix-Solera, J., C. Guerrero, F. García-Orenes, G.M. Barcenas and M.P. Torres. 2009. Forest fire effects on soil microbiology. In: A. Cerdà and P.R. Robichaud (eds.), Fire effects on soils and restoration strategies. Science Publishers, Enfield. pp. 133–176.Google Scholar
- Muona, J. and I. Rutanen. 1994. The short-term impact of fire on the beetle fauna in boreal coniferous forest. Ann. Zool. Fenn. 31:109–121.Google Scholar
- Naveh, Z. 1994. The role of fire and its management in the conservation of Mediterranean ecosystems and landscapes. In: J.M. Moreno and W.C. Oechel (eds.), The role of Fire in Mediterranean Type Ecosystems. Springer-Verlag, New York. pp. 163–186.CrossRefGoogle Scholar
- Newton, A.F. Jr. 1984. Mycophagy in Staphylinoidea (Coleoptera). In: Q. Wheeler and M. Blackwell (eds.), Fungus-Insect Relationships. Perspectives in Ecology and Evolution. Columbia University Press, New York. pp. 302–353.Google Scholar
- Paquin, P. and D. Coderre. 1997. Deforestation and fire impact on edaphic insect larvae and other macroarthropods. Environ. En-tomol. 26(1):21–30.CrossRefGoogle Scholar
- Pausas, J.G., J. Llovet, A. Rodrigo and R. Vallejo. 2008. Are wildfires a disaster in the Mediterranean basin? – A review. Int. J. Wildland Fire 17:713–723.CrossRefGoogle Scholar
- Prieto-Fernández, A., M. Carballas and T. Carballas. 2004. Inorganic and organic N pools in soil burned or heated: immediate alterations and evolution after forest wildfires. Geoderma 121:291–306.CrossRefGoogle Scholar
- Pryke, J.S. and M.J. Samways. 2012. Importance of using many taxa and having adequate controls for monitoring impacts of fire for arthropod conservation. J. Insect Conserv. 16:177–185.CrossRefGoogle Scholar
- R Development Core Team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
- Rainio, J. and J. Niemelä. 2003. Ground beetles (Coleoptera: Carabi-dae) as bioindicators. Biodivers. Conserv. 12:487–506.CrossRefGoogle Scholar
- Reyes, O. and M. Casal. 2008. Regeneration models and plant regenerative types related to the intensity of fire in Atlantic shrubland and woodland species. J. Veg. Sci. 19:575–583.CrossRefGoogle Scholar
- Rodrigo, A., J. Retana and F.X. Picó. 2004. Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85:716–729.CrossRefGoogle Scholar
- Romanya, J., P. Casals and V.R. Vallejo. 1994. Effects of slash burning on soil phosphorus fractions and sorption and desorption of phosphorus. Forest Ecol. Manag. 65:89–103.CrossRefGoogle Scholar
- Samu, F., F. Kádár, G. Ónodi, M. Kertész, A. Szirányi, É. Szita, K. Fetykó, D. Neidert, E. Botos and V. Altbäcker. 2010. Differential ecological responses of two generalist arthropod groups, spiders and carabid beetles (Araneae, Carabidae), to the effects of wildfire. Community Ecol. 11:129–139.CrossRefGoogle Scholar
- Sánchez, J.R., V.J. Mangas, C. Ortiz and J. Bellot. 1994. Forest fire effect on soil chemical properties and runoff. In: M. Sala and J.L. Rubio (eds.), Soil Erosion and Degradation as a Consequence of Forest Fires. Geoforma Ediciones, Logroño. pp. 54–66.Google Scholar
- Taboada, A., D.J. Kotze, R. Tárrega and J.M. Salgado. 2006. Traditional forest management: Do carabid beetles respond to human-created vegetation structures in an oak mosaic landscape? Forest Ecol. Manag. 237:436–449.CrossRefGoogle Scholar
- Tárrega, R. and E. Luis. 1989. Forest fires and climatic features in León province. Fire effects on Quercus pyrenaica ecosystems. In: J.G. Goldamer and M.J. Jenkins (eds.), Fire in Ecosystem Dynamics. SPB Academic Publishing, The Hague. pp. 63–69.Google Scholar
- Tárrega, R., E. Luis and E. Marcos. 1996. Relationship between soil changes and plant succession in post-fire regeneration of Quer-cus pyrenaica ecosystems. Arid Soil Res. Rehabilitation 10:85–93.CrossRefGoogle Scholar
- Tárrega, R., L. Calvo, E. Marcos and A. Taboada. 2006. Forest structure and understory diversity in Quercus pyrenaica communities with different human uses and disturbances. Forest Ecol. Manag. 227:50–58.CrossRefGoogle Scholar
- Thiele, H.-U. 1977. Carabid Beetles in their Environment. Springer, New York.CrossRefGoogle Scholar
- Thomas, C.F.G., N.J. Brown and D.A. Kendall. 2006. Carabid movement and vegetation density: Implications for interpreting pitfall trap data from split-field trials. Agric. Ecosyst. Environ. 113:51–61.CrossRefGoogle Scholar
- Trabaud, L. 1983. The effects of different fire regimes on soil nutrient levels in Quercus coccifera garrigue. In: F.J. Kruger, D.T. Michell and J.U.M. Jarvis (eds.), Mediterranean-type Ecosystems: The Role of Nutrients. Springer-Verlag, Berlin.Google Scholar
- Trabaud, L. (ed.) 1987. The Role of Fire in Ecological Systems. SPB Academic Publishing. The Hague.Google Scholar
- Trabaud, L. and J. Lepart. 1980. Diversity and stability in garrigue ecosystems after fire. Vegetatio 43:49–57.CrossRefGoogle Scholar
- Úbeda, X., L. Outeiro, P. Pereira and A. Miguel. 2009. Estudios so-bre las consecuencias del fuego en las propiedades del suelo y la erosión en Catanluya. In: A. Cerdà and J. Mataix-Solera (eds.), Efectos de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Cát-edra Divulgación de la Ciencia. Universitat de València. pp. 327–353.Google Scholar
- Ukmar, E., C. Battisti, L. Luiselli and M.A. Bologna. 2007. The effects of fire on communities, guilds and species of breeding birds in burnt and control pinewoods in central Italy. Biodivers. Conserv. 16:3287–3300.CrossRefGoogle Scholar
- Wikars, L.-O. and J. Schimmel. 2001. Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecol. Manag. 141:189–200.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.