Advertisement

Community Ecology

, Volume 14, Issue 1, pp 101–109 | Cite as

The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests

  • R. ÁdámEmail author
  • P. Ódor
  • J. Bölöni
Article
  • 1 Downloads

Abstract

Different types of forest use significantly changed the structure and species composition of European temperate forests. Herbaceous species and seedlings are important parts of the forest ecosystem, thus it is necessary to understand the effects of stand characteristics on the species composition of the understory. In our study we assessed the main factors that affect the species composition of herb and tree seedling assemblages in Quercus petraea and Q. cerris dominated stands (age 50–150 years) in the Bükk Mountains, Hungary. The relationship between the studied assemblages and explanatory variables (tree species composition, stand structure, canopy closure and topography) were explored by Redundancy Analysis (RDA). The occurrence of herbaceous species was affected by canopy closure, stand structure (mean DBH and DBHcv of trees), topography and the density and diversity of shrub layers. Oak forest species were associated with more open stands with sparsely distributed large trees, while mesic forest species were positively associated with heterogeneous stand structure, low shrub density, and western exposure. Seedlings of trees and shrubs showed a dispersal limited phenomenon. The composition of seedlings was significantly influenced by the mean DBH of trees, the structural heterogeneity of the overstory, the tree species diversity and the density of shrub layers. However the seedlings of both dominant oak species required the same stand structure, sessile oak was able to regenerate almost exclusively in those stands where it was dominant in the overstory, which is significant for the management of the species. Generally, forest management affects species composition and structure of the overstory, accordingly it had direct and indirect effects on the understory community as well.

Keywords

Forest herbs Oak forests Seedlings Stand structure Regeneration 

Abbreviation

DBH

Diameter at breast height.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2013_14010101_MOESM1_ESM.pdf (100 kb)
Supplementary material, approximately 103 KB.

References

  1. ÁESZ (Hungarian Forest Service). 2008. Magyarország erdőál-lományai, 2006. Hungarian Forest Service, Budapest, http://www.nebih.gov.hu/erdeszet_cd/index.htmGoogle Scholar
  2. Barbier, S., F. Gosselin and P. Balandrier. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved – A critical review for temperate and boreal forests. Forest Ecol. Manag. 254: 1–15.CrossRefGoogle Scholar
  3. Bengtsson, J., S. G. Nilsson, A. Franc and P. Menozzi. 2000. Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol. Manag. 132: 39–50.CrossRefGoogle Scholar
  4. Borhidi, A., B. Kevey and G. Lendvay. 2012. Plant Communities of Hungary. Akadémiai Kiadó, Budapest.Google Scholar
  5. Bölöni, J., Zs. Molnár, M. Biró and F. Horváth. 2008. Distribution of the (semi-) natural habitats in Hungary II. Woodlands and shrublands. Acta Bot. Hung. 50 (suppl.): 107–148.CrossRefGoogle Scholar
  6. Bölöni, J., G. Fekete, A. Kun, G. Tímár, D. Bartha, F. Szmorad, J. Nagy and M. Juhász. 2011. L2a – Cseres-kocsánytalan tölgye-sek. In: Bölöni, J., Molnár, Zs. and Kun, A. (eds.): Magyar-ország élőhelyei. Vegetációtípusok leírása és határozója, ÁNÉR 2011. MTA Ökológiai és Botanikai Kutatóintézete, Vácrátót, pp. 308–314.Google Scholar
  7. Brunet, J., U. Falkengren-Grerup and G. Tyler. 1996. Herb layer vegetation of south Swedish beech and oak forests – effects of management and soil acidity during one decade. Forest Ecol. Manag. 88: 259–272.CrossRefGoogle Scholar
  8. Burrascano, S., F. M. Sabatini and C. Blasi. 2011. Testing indicators of sustainable forest management on understorey composition and diversity in southern Italy through variation partitioning. Plant Ecol. 212: 829–841.CrossRefGoogle Scholar
  9. Chytrý, M. and L. Tichý. 2003. Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Folia Facultatis Scientiarum Natu-ralium Universitatis Masarykianae Brunensis 108: 1–231.Google Scholar
  10. Csapody, I., A. Horánszky, T. Pócs, T. Simon, I. Szodfridt and P. Tallós. 1962. Die ökologischen Artengruppen der Wälder Un-garns. Acta Agronomica 12: 209–232.Google Scholar
  11. Decocq, G., M. Aubert, F. Dupont, J. Bardat, A. Wattez-Franger, R. Saguez, B. De Foucault, D. Alard and A. Deleis-Dusollier. 2005. Silviculture-driven vegetation change in a European temperate deciduous forest. Ann. Forest Sci. 62: 313–323.CrossRefGoogle Scholar
  12. Directive 92/43/EEC, 1992. Council Directive of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. – OJ L 206, 22.07.1992.Google Scholar
  13. Dzwonko, Z. and S. Gawroński. 2002. Effect of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol. Conserv. 106: 389–398.CrossRefGoogle Scholar
  14. Ford, W. M., R. H. Odom, P. E. Hale and B. R. Chapman. 2000. Stand age, stand characteristics, and landform effects on under-story herbaceous communities in southern Appalachian cove-hardwoods. Biol. Conserv. 93: 237–246.CrossRefGoogle Scholar
  15. Fredericksen, T. S., B. D. Ross, W. Hoffman, M. L. Morrison, J. Beyea, B. N. Johnson, M. B. Lester and E. Ross. 1999. Short-term understory plant community responses to timber-harvesting intensity on non-industrial private forestlands in Pennsylvania. Forest Ecol. Manag. 116: 129–139.CrossRefGoogle Scholar
  16. Gencsi, L. and R. Vancsura. 1992. Dendrológia. Mezőgazda Kiadó, Budapest.Google Scholar
  17. Graae, B. J. and V. S. Heskjaer. 1997. A comparison of understorey vegetation between untouched and managed deciduous forest in Denmark. Forest Ecol. Manag. 96: 111–123.CrossRefGoogle Scholar
  18. Härdtle , W., G. von Oheimb and C. Westphal. 2003. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). Forest Ecol. Manag. 182: 327–338.CrossRefGoogle Scholar
  19. Hermy, M., O. Honnay, L. Firbank, C. Grashof-Bokdam and J. E. Lawesson. 1999. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol. Conserv. 91: 9–22.CrossRefGoogle Scholar
  20. Honnay, O., M. Hermy and P. Coppin. 1999. Impact of habitat quality on forest plant species colonization. Forest Ecol. Manag. 115: 157–170.CrossRefGoogle Scholar
  21. Horn, H. S. 1971. The Adaptive Geometry of Trees. Princeton University Press, Princeton.Google Scholar
  22. Horváth, F. and A. Borhidi (eds.) 2002. A hazai erdőrezervátum-ku-tatás célja, stratégiája és módszerei. A KvVM Ter-mészetvédelmi Hivatalának tanulmánykötetei 8. Természet-Búvár, Budapest.Google Scholar
  23. Horváth, F., K. Z. Dobolyi, T. Morschhauser, L. Lőkös, L. Karas and T. Szerdahelyi. 1995. FLÓRA Adatbázis 1.2. Taxon-lista és at-tribútum-állomány. Flóra Munkacsoport MTA Ökológiai és Bo-tanikai Kutatóintézete és MTM Növénytár, Vácrátót.Google Scholar
  24. Ito, S., R. Nakayama and G. P. Buckley. 2004. Effects of previous land-use on plant species diversity in semi-natural and plantation forests in a warm-temperate region in southeastern Kyushu, Japan. Forest Ecol. Manag. 196: 213–225.CrossRefGoogle Scholar
  25. Kelemen, K., B. Mihók, L. Gálhidy and T. Standovár. 2012. Dynamic response of herbaceous vegetation to gap opening in a central European beech stand. Silva Fennica 46: 53–65.CrossRefGoogle Scholar
  26. Kirby, K. J. 1988. Changes in the ground flora under plantations on ancient woodland sites. Forestry 61: 317–338.CrossRefGoogle Scholar
  27. Kotroczó, Zs., Zs. Krakomperger, G. Koncz, M. Papp, D. B. Richard and J. A. Tóth. 2007. A Síkfőkúti cseres-tölgyes fafaj-össze- tételének és struktúrájának hosszú távú változása. Természet-védelmi Közlemények 13: 93–100.Google Scholar
  28. Lemmon, R. E. 1956. A spherical densiometer for estimating forest overstorey density. Forest Sci. 2: 314–320.Google Scholar
  29. Maranón, T., R. Ajbilou, F. Ojeda and J. Arroyo. 1999. Biodiversity of woody species in oak woodlands of southern Spain and northern Morocco. Forest Ecol. Manag. 115: 147–156.CrossRefGoogle Scholar
  30. Mersich, I., T. Práger, P. Ambrózy, M. Hunkár and Z. Dunkel (eds.) 2002. Magyarország éghajlati atlasza. Országos meteorológiai Szolgálat, Budapest.Google Scholar
  31. Pérez-Ramos, I. M., M. A. Zavala, T. Maranón, M. D. Díaz-Villa and F. Valladares. 2008. Dynamics of understorey herbaceous plant diversity following shrub clearing of cork oak forests: a five-year study. Forest Ecol. Manag. 255: 3242–3253.CrossRefGoogle Scholar
  32. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden, The Netherlands.Google Scholar
  33. Rackham, O. 2000. The History of the Countryside: The Classic History of Britain’s Landscape, Flora and Fauna. Phoenix Press, New York.Google Scholar
  34. Rogers, D. A., T. P. Rooney, D. Olson and D. M. Waller. 2008. Shifts in southern Wisconsin forest canopy and understory richness, composition and heterogenity. Ecology 89: 2482–2492.CrossRefGoogle Scholar
  35. Roleček, J. 2005. Vegetation types of dry-mesic oak forests in Slovakia. Preslia 77: 241–261.Google Scholar
  36. Rubio, A., R. Gavilán and A. Escudero. 1999. Are soil characteristics and understorey composition controlled by forest management? Forest Ecol. Manag. 113: 191–200.CrossRefGoogle Scholar
  37. Schumann, M. E., A. S. White and J. W. Witham. 2003. The effects of harvest-created gaps on plant species diversity, composition and abundance in a Maine oak-pine forest. Forest Ecol. Manag. 176: 543–561.CrossRefGoogle Scholar
  38. Sharpe, F., D. C. Shaw, C. L. Rose, S. C. Sillett and A. B. Carey. 1996. The biologically significant attributes of forest canopies to small birds. Northwest Sci. 70: 86–93.Google Scholar
  39. Simon, T. (ed.) 2000. A Magyarországi edényes flóra határozója. Harasztok-Virágos növények. Tankönyvkiadó, Budapest.Google Scholar
  40. Ståhl, G., A. Ringvall and J. Fridman. 2001. Assessment of coarse woody debris – a methodological overview. Ecological Bulletins 49: 57–70.Google Scholar
  41. Standovár, T., P. Ódor, R. Aszalós and L. Gálhidy. 2006. Sensitivity of ground layer vegetation diversity descriptors in indicating forest naturalness. Community Ecol. 7: 199–209CrossRefGoogle Scholar
  42. Szabó, P. 2005. Woodland and Forests in Medieval Hungary. Ar-chaeopress, Oxford.Google Scholar
  43. Ter Braak, C. J. F. and P. Šmilauer. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York, USA.Google Scholar
  44. Tinya, F., S. Márialigeti, I. Király, B. Németh and P. Ódor. 2009. The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Őrség, Western Hungary. Plant Ecol. 204: 69–81.CrossRefGoogle Scholar
  45. Tobisch, T. and T. Standovár. 2005. A comparison of vegetation patterns in the tree and herb layers of a hardwood forest. Community Ecol. 6: 29–37.CrossRefGoogle Scholar
  46. Tutin, T. G., N. A. Burges, A. O. Chater, J. R. Edmondson, V. H. Heywood, D. M. Moore, D. H. Valentine, S. M. Walters and D. A. Webb. 1964–1993. Flora Europaea. Vols. 1–5 and Vol. 1, ed. 2. Cambridge University Press, Cambridge.Google Scholar
  47. Tybirk, K. and B. Strandberg. 1999. Oak forest development as a result of historical land-use patterns and present nitrogen deposition. Forest Ecol. Manag. 114: 97–106.CrossRefGoogle Scholar
  48. Van Calster, H., L. Baeten, K. Verheyen, D. L. Keersmaeker, S. Dekeyser, J. E. Rogister and M. Hermy. 2008. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Forest Ecol. Manag. 256: 519–528.CrossRefGoogle Scholar
  49. Van Wagner, C. E. 1968. The line intersect method in forest fuel sampling. Forest Sci. 14: 20–26.Google Scholar
  50. von Oheimb, G. and J. Brunet. 2007. Dalby Söderskog revisited: long-term vegetation changes in a south Swedish deciduous forest. Acta Oecol. 31: 229–242.CrossRefGoogle Scholar
  51. von Oheimb, G. and W. Härdtle. 2009. Selection harvest in temperate deciduous forest: impact on herb layer richness and composition. Biodivers. Conserv. 18: 271–287.CrossRefGoogle Scholar
  52. Warren, W. G. and P. F. Olsen. 1964. A line intersect technique for assessing logging waste. Forest Sci. 10: 267–276.Google Scholar
  53. Whigham, D. F. 2004. The ecology of woodland herbs in temperate deciduous forests. Annu. Rev. Ecol. Evol. S. 35: 583–621.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.MTA Centre for Ecological ResearchInstitute of Ecology and BotanyAlkotmányHungary

Personalised recommendations