Community Ecology

, Volume 13, Issue 2, pp 238–242 | Cite as

Comparison of methods to estimate soil seed banks: the role of seed size and mass

  • S. L. GonzalezEmail author
  • L. Ghermandi


There are two main methods for estimating seed density and species composition of soil seed banks: manual seed extraction and seedling emergence. These methods were used to determine and compare seed density and species composition in the soil of a natural grassland in Patagonia. Additionally, known amounts of seeds of different sizes from Patagonian grassland species were mixed with soil to evaluate the efficiency of the seed extraction method, and determine their recovery percentage. Seed density found in the grassland soil with the extraction method was four times higher than that found with the seedling emergence method. Through the use of these two methods, there was very little overlap found in species composition. Small seeds (< 1 mm) were only found with the seedling emergence method, whereas the seeds of species with specific germination requirements were found with the seed extraction method. Seed recovery of grassland species varied from 2.5% for smaller seeds (Erophila verna) to 100% for larger seeds (Rumex acetosella) with the seed extraction method. This method was more effective in detecting seeds of large-seeded species. Discrepancies in seed detection between both methods may be related to seed dormancy, specific germination requirements, seed size and mass. These two methods are necessary to describe seed density and seed bank composition.


Grasslands Method effectiveness Seedling emergence method Seed extraction method Seed mass 


Correa (1969–1999) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, D.A. and S.D. Miller. 1989. A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Res. 29:365–373.CrossRefGoogle Scholar
  2. Baskin, C.C. and J.M. Baskin. 1998. Seed Ecology, Biogeography and Evolution of Dormancy and Germination. Academic Press, San Diego.Google Scholar
  3. Bernhardt, K.G., M. Koch, M. Kropf, E. Ulbel and J. Webhofer. 2008. Comparison of two methods characterizing the seed bank of amphibious plants in submerged sediments. Aquatic Bot. 88:171–177.CrossRefGoogle Scholar
  4. Borza, J.K., P.R. Westerman and M. Liebman. 2007. Comparing estimates of seed viability in three foxtail (Setaria) species using the imbibed seed crush test with and without additional tetra-zolium testing. Weed Technology 21:518–522.CrossRefGoogle Scholar
  5. Brown, D. 1992. Estimating the composition of a forest seed bank: a comparison of the seed extraction and seedling emergence methods. Can. J. Bot. 70:1063–1612.CrossRefGoogle Scholar
  6. Correa, M.N. 1969–1999. Flora patagónica. Varios Volúmenes, Colección Cíentfica INTA, Buenos Aires, Argentina.Google Scholar
  7. de Villiers, A. J., M.W. Van Rooyen and G.K. Theran. 1994. Comparison of two methods for estimating the size of the viable seed bank of two plant communities in the Strandveld of the west coast, South Africa. South Afr. J. Bot. 60:81–84.CrossRefGoogle Scholar
  8. Ferrandis, P., J.M. Herranz and J.J. Martínez-Sánchez. 1999. Fire impact on a maquis soil seed bank in Cabañeros National Park (Central Spain). Israel J. Plant Sci. 47:17–26.CrossRefGoogle Scholar
  9. Ghermandi, L. 1992. Caracterización del banco de semillas de una estepa en el noroeste de la Patagonia. Ecol. Austral. 2:39–46.Google Scholar
  10. Ghermandi, L. and S. Gonzalez. 2009. Diversity and functional groups dynamics affected by drought and fire in Patagonian grasslands. Ecoscience 16:408–417.CrossRefGoogle Scholar
  11. Gonzalez, S. and L. Ghermandi. 2008. Postfire seed bank dynamics on semiarid grasslands. Plant Ecol. 199:175–185.CrossRefGoogle Scholar
  12. Gonzalez, S., J. Franzese and L. Ghermandi. 2010. Role of fire on Patagonian grasslands: changes in aboveground vegetation and soil seed bank. In: M. Haider and T. Müller (eds.), Advances in Environmental Research. Vol. II. Nova Science Publishers, Hauppauge, NY. pp. 243–264.Google Scholar
  13. Gross, K.L. 1984. Effects of seed size and growth form on seedling establishment of six monocarpic perennial plants. J. Ecol. 72:369–387.CrossRefGoogle Scholar
  14. Gross, K.L. 1990. A comparison of methods for estimating soil seed banks. J. Ecol. 78:1079–1093.CrossRefGoogle Scholar
  15. Gross, K.L. and K.A. Renner. 1989. A new method for estimating seed numbers in the soil. Weed Sci. 37:836–839.CrossRefGoogle Scholar
  16. Ishikawa-Goto, M. and S. Tsuyusaki. 2004. Methods of estimating seed banks with reference to long-term seed burial. J. Plant Res. 117:245–248.CrossRefGoogle Scholar
  17. Leck, M.A., K.P. Parker and R.L. Simpson. 1989.The Ecology of Soil Seed Banks. Academic Press, San Diego, CA.Google Scholar
  18. Malone, C.R. 1967. A rapid method for enumeration of viable seeds in soil. Weeds 15:381–382.CrossRefGoogle Scholar
  19. Manders, P.T. 1990. Soil seed banks and post-fire seed deposition across a forest-fynbos ecotone in the Cape Province. J. Veg. Sci. 1:491–498.CrossRefGoogle Scholar
  20. Mesgaran, M.B., H.R. Mashhadi, E. Zand and H.M. Alizadeh. 2007. Comparison of three methodologies for efficient seed extraction in studies of soil weed seedbanks. Weed Res. 47:472–478.CrossRefGoogle Scholar
  21. Plue, J., K. Thompson, K. Verheyen and M. Hermy. 2012. Seed banking in ancient forest species: why total sampled area really matters. Seed Sci. Res. 22:123–133.CrossRefGoogle Scholar
  22. Price, J.N., B.D. Wright, C.L. Gross and W.R.D.B. Whalley. 2010. Comparison of seedling emergence and seed extraction for estimating the composition of soil seed banks. Methods Ecol. Evol. 2:151–157.CrossRefGoogle Scholar
  23. Roberts, H.A. 1981. Seedbanks in soil. Adv. Appl. Biol. 6:1–55.Google Scholar
  24. Thompson, K. and J.P Grime. 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67: 893–921.CrossRefGoogle Scholar
  25. Tsuyuzaki, S. 1994. Rapid seed extraction from soils by a flotation method.. Weed Res. 34: 433–436.CrossRefGoogle Scholar
  26. Warr, S.J., K. Thompson and M. Kent. 1993. Seed banks as a neglected area of biogeographic research: a review of literature and sampling techniques. Progr. Phys. Geogr. 17:329–347.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Laboratorio Ecotono, Instituto Nacional de Investigaciones en Biodiversidady MedioambienteCONICET-Universidad Nacional del ComahueBarilocheArgentina

Personalised recommendations