Advertisement

Community Ecology

, Volume 13, Issue 1, pp 21–29 | Cite as

Competition depends more on the functional structure of plant community than on standing biomass

  • M. L. NavasEmail author
  • A. Fayolle
Article
  • 1 Downloads

Abstract

Hypothesising that competition is a major ecological factor that filters plants on the basis of traits, we tested whether competition intensity and importance were better explained by the functional structure of communities than by standing biomass. We re-analysed data of three experiments in which one to four species of phytometers have been transplanted with or without vegetation in communities displaying a range of standing biomass. Changes in performance of phytometers among communities were used to assess competition intensity and importance. The functional structure of each community was characterized by the mean and functional divergence of plant height, a trait significantly related to resource depletion by competition. Relationships between competition components and standing biomass or functional structure of communities were calculated for each experiment. Competition importance was explained more significantly by the mean of plant height than by the standing biomass of communities. When the range of functional diversity was large enough, the importance of competition was high in communities with low functional diversity because of similarity in functioning among highly competitive plants, and low in more diverse communities. Competition intensity generally showed lower or no relationship with standing biomass or functional structure of communities. These results confirm the dependence of competition on functional structure of communities.

Keywords

Community structure Competition importance Competition intensity Plant height Trait 

Abbreviations

CWM

Community-level Weighted Mean; FDiv–Functional Divergence; RGR–Relative Growth Rate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, C. 2008. Flore des causses. Bulletin de la Société Botanique du Centre-Ouest: 1–784.Google Scholar
  2. Bertness, M.D. and R.M. Callaway. 1994. The role of positive forces in natural communities: A post-cold war perspective. Trends Ecol. Evol. 144: 363–372.Google Scholar
  3. Brooker, R.W. and Z. Kikvidze. 2008. Importance: An overlooked concept in plant interaction research. J. Ecol. 96: 703–708.CrossRefGoogle Scholar
  4. Brooker, R.W., Z. Kikvidze, F.I. Pugnaire, R.M. Callaway, P. Choler, C.J. Lortie and R. Michalet. 2005. The importance of importance. Oikos 109: 63–70.CrossRefGoogle Scholar
  5. Cahill, J.F. 1999. Fertilization effects on interactions between above-and belowground competition in an old field. Ecology 80: 466– 480.CrossRefGoogle Scholar
  6. Corcket, E., P. Liancourt, R.M. Callaway and R. Michalet. 2003. The relative importance of competition for two dominant grass species as affected by environmental manipulations in the field. Ecoscience 10: 186–194.CrossRefGoogle Scholar
  7. Damgaard, C. and A. Fayolle. 2009. Measuring the importance of competition: A new formulation of the problem. J. Ecol. 98: 1–6.CrossRefGoogle Scholar
  8. Falster, D.S. and M. Westoby. 2003. Leaf size and angle vary widely across species: What consequecnes for light interception? New Phytol. 158: 509–525.CrossRefGoogle Scholar
  9. Fayolle, A. 2008. Structure des communautés de plantes herbacées sur les grands causses: Stratégies fonctionnelles des espèces et interactions interspécifiques, Montpellier SupAgro, Montpellier.Google Scholar
  10. Freckleton, R.P., A.R. Watkinson and M. Rees. 2009. Measuring the importance of competition in plant communities. J. Ecol. 97: 379–384.CrossRefGoogle Scholar
  11. Garnier, E., G. Laurent, A. Bellmann, S. Debain, P. Berthelier, B. Ducout, C. Roumet and M.-L. Navas. 2001. Consistency of species ranking based on functional leaf traits. New Phytol. 152: 153–173.CrossRefGoogle Scholar
  12. Garnier, E. and M.L. Navas. 2011. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology. A review. Agronomy and Sustainable Development, In Press. 10.1007/sl3593-011-0036-yGoogle Scholar
  13. Gaudet, C.L. and P.A. Keddy. 1988. A comparative approach to predicting competitive ability from plant traits. Nature 334: 242– 243.CrossRefGoogle Scholar
  14. Goldberg, D.E. 1996. Competitive ability: Definitions, contingency and correlated traits. Phil. Trans. Royal Soc. London: Biol. Sci. 351: 1377–1385.CrossRefGoogle Scholar
  15. Goldberg, D.E., T. Rajaniemi, J. Gurevitch and A. Stewart-Oaten. 1999. Empirical approaches to quantifying interaction intensity: Competition and facilitation along productivity gradients. Ecology 80: 1118–1131.CrossRefGoogle Scholar
  16. Grace, J.B. 1991. A clarification of the debate between Grime and Tilman. Funct. Ecol. 5: 583–587.CrossRefGoogle Scholar
  17. Grace, J.B. 1993. The effects of habitat productivity on competition intensity. Trends Ecol. Evol. 8: 229–230.CrossRefGoogle Scholar
  18. Grime, J.P. 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86: 902–910.CrossRefGoogle Scholar
  19. Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J. Veg. Sci. 17: 255–260.CrossRefGoogle Scholar
  20. Gross, N., P. Liancourt, P. Choler, K.N. Suding and S. Lavorel. 2010. Strain and vegetation effects on local limiting resources explain the outcomes of biotic interactions. Persp. Plant Ecol.Evol. Syst. 12: 9–19.CrossRefGoogle Scholar
  21. Huston, M. and T. Smith. 1987. Plant succession: Life history and competition. Amer. Nat. 130: 168–198.CrossRefGoogle Scholar
  22. Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22: 415–427.CrossRefGoogle Scholar
  23. Kattge, J., S. Díaz, S. Lavorel, I.C. Prentice, P. Leadley, G. Bönisch, E. Gamier, M. Westoby, P.B. Reich, I.J. Wright, J.H.C. Cornelissen, C. Violle, S.P. Harrison, P.M. van Bodegom, M. Reichstein, B.J. Enquist, N.A. Soudzilovskaia, D.D. Ackerly, M. Anand, O. Atkin, M. Bahn, T.R. Baker, D. Baldocchi, R. Bekker, C.C. Blanco, B. Blonder, W.J. Bond, R. Bradstock, D.E. Bunker, F. Casanoves, J. Cavender-Bares, J.Q. Chambers, F.S. Chapin Iii, J. Chave, D. Coomes, W.K. Cornwell, J.M. Craine, B.H. Dobrin, L. Duarte, W. Durka, J. Elser, G. Esser, M. Estiarte, W.F. Fagan, J. Fang, F. Fernández-Méndez, A. Fidelis, B. Finegan, O. Flores, H. Ford, D. Frank, G.T. Freschet, N.M. Fyllas, R.V. Gallagher, W.A. Green, A.G. Gutierrez, T. Hickler, S.I. Higgins, J.G. Hodgson, A. Jalili, S. Jansen, C.A. Joly, A.J. Kerkhoff, D. Kirkup, K. Kitajima, M. Kleyer, S. Klotz, J.M.H. Knops, K. Kramer, I. Kühn, H. Kurokawa, D. Laughlin, T.D. Lee, M. Leishman, F. Lens, T. Lenz, S.L. Lewis, J. Lloyd, J. Llusia, F. Louault, S. Ma, M.D. Mahecha, P. Manning, T. Massad, B.E. Medlyn, J. Messier, A.T. Moles, S.C. Müller, K. Nadrowski, S. Naeem, Ü. Niinemets, S. Nöllert, A. Nüske, R. Ogaya, J. Oleksyn, V.G. Onipchenko, Y. Onoda, J. Ordoñez, G. Overbeck, W.A. Ozinga, S. Patiño, S. Paula, J.G. Pausas, J. Peñuelas, O.L. Phillips, V. Pillar, H. Poorter, L. Poorter, P. Poschlod, A. Prinzing, R. Proulx, A. Rammig, S. Reinsch, B. Reu, L. Sack, B. Salgado-Negret, J. Sardans, S. Shiodera, B. Shipley, A. Siefert, E. Sosinski, J.F. Soussana, E. Swaine, N. Swenson, K. Thompson, P. Thornton, M. Waldram, E. Weiher, M. White, S. White, S.J. Wright, B. Yguel, S. Zaehle, A.E. Zanne and C. Wirth. 2011. Try – a global database of plant traits. Global Change Biology: 17: 2905–2935.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Keddy, P.A. 1992. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 3: 157–164.CrossRefGoogle Scholar
  25. Keddy, P. A. and B. Shipley. 1989. Competitive hierarchies in herbaceous plant communities. Oikos 54: 234–241.Google Scholar
  26. Kikvidze, Z. and R. Brooker. 2010. Towards a more exact definition of the importance of competition - a reply to Freckleton et al. (2009). J. Ecol. 98: 719–724.CrossRefGoogle Scholar
  27. Lavorel, S., K. Grigulis, S. McIntyre, N.S.G. Williams, D. Garden, J. Dorrough, S. Berman, F. Quetier, A. Thebault and A. Bonis. 2008. Assessing functional diversity in the field - methodology matters ! Funct. Ecol. 22: 134–147.Google Scholar
  28. Leps, J., F. de Bello, S. Lavorel and S. Berman. 2006. Quantifying and interpreting functional diversity of natural communities: Practical considerations matter. Preslia 78: 481–501.Google Scholar
  29. Liancourt, P., F. Viard-Cretat and R. Michalet. 2009. Contrasting community responses to fertilization and the role of the competitive ability of dominant species. J. Veg. Sci. 20: 138–147.CrossRefGoogle Scholar
  30. McGill, B.J., B.J. Enquist, E. Weiher and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21: 178–185.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Navas, M.L. and C. Violle. 2009. Plant traits related to competition: How do they shape the functional diversity of communities? Community Ecol. 10: 131–137.CrossRefGoogle Scholar
  32. Reader, R.J., S.D. Wilson, J.W. Belcher, I. Wisheu, P.A. Keddy, D. Tilman, E.C. Morris, J.B. Grace, J.B. McGraw, H. Olff, R. Turkington, E. Klein, Y. Leung, B. Shipley, R. Vanhulst, M.E. Johansson, C. Nilsson, J. Gurevitch, K. Grigulis and B.E. Beisner. 1994. Plant competition in relation to neighbor biomass - an intercontinental study with poa pratensis. Ecology 75: 1753–1760.CrossRefGoogle Scholar
  33. Sammul, M., K. Kull, L. Oksanen and P. Veromann. 2000. Competition intensity and its importance: Results of field experiments with anthoxanthum odoratum. Oecologia 125: 18–25.CrossRefGoogle Scholar
  34. Scheffer, M. and E.H.V. Nes. 2006. Self-organized similarity, the evolutionary emergence of groups of similar species. Proc. Nat. Acad. Sci. USA 103: 6230–6235.CrossRefGoogle Scholar
  35. Schwinning, S. and J. Weiner. 1998. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113: 447–455.CrossRefGoogle Scholar
  36. Scurlock, J.M.O., K. Johnson and R.J. Olson. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology 8: 736–753.CrossRefGoogle Scholar
  37. StatSoft. 2009. Statistica v9. www.statsoft.fr.Google Scholar
  38. Stubbs, W.J. and J.B. Wilson. 2004. Evidence for limiting similarity in a sand dune community. J. Ecol. 92: 557–567.CrossRefGoogle Scholar
  39. Suding, K.N. 2001. The effects of gap creation on competitive interactions: Separating changes in overall intensity from relative rankings. Oikos 94: 219–227.CrossRefGoogle Scholar
  40. TwolanStrutt, L. and P.A. Keddy. 1996. Above- and belowground competition intensity in two contrasting wetland plant communities. Ecology 77: 259–270.CrossRefGoogle Scholar
  41. Violle, C, E. Garnier, J. Lecoeur, C. Roumet, C. Podeur, A. Blanchard and M.L. Navas. 2009. Competition, traits and resource depletion in plant communities. Oecologia 160: 747–755.CrossRefGoogle Scholar
  42. Violle, C, J. Richarte and M.L. Navas. 2006. Effects of litter and standing biomass on growth and reproduction of two annual species in a mediterranean old-field. J. Ecol. 94: 196–205.CrossRefGoogle Scholar
  43. Weiher, E. and P.A. Keddy. 1995. Assembly rules, null models, and trait dispersion: New questions front old patterns. Oikos 74: 159– 164.CrossRefGoogle Scholar
  44. Weiner, J. 1990. Asymmetric competition in plant populations. Trends Ecol. Evol. 5: 360–364.CrossRefGoogle Scholar
  45. Welden, C.W. and W.L. Slauson. 1986. The intensity of competition versus its importance: An overlooked distinction and some implications. Quart. Rev. Biol. 61: 23–44.CrossRefGoogle Scholar
  46. Westoby, M. 1998. A leaf-height-seed (lhs) plant ecology strategy scheme. Plant and Soil 199: 213–227.CrossRefGoogle Scholar
  47. Wilson, S.D. and D. Tilman. 1993. Plant competition and resource availability in response to disturbance and fertilization. Ecology 74: 599–611.CrossRefGoogle Scholar
  48. Zhang, J., G. Cheng, F. Yu, N. Kraüchi and M.-H. Li. 2008. Intensity and importance of competition for a grass (Festuca rubra) and a legume (Trifolium pratense) vary with environmental changes. J. Integrative Plant Biol. 50: 1570–1579.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Montpellier SupAgroCentre d’Ecologie Fonctionnelle et Evolutive (UMR 5175)MontpellierFrance
  2. 2.CNRS, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175)MontpellierFrance

Personalised recommendations