Advertisement

Community Ecology

, Volume 12, Issue 2, pp 249–258 | Cite as

Population density of syntopic, differently sized lizards in three fragmented woodlands from Mediterranean Central Italy

  • M. Maura
  • L. Vignoli
  • M. A. Bologna
  • L. Rugiero
  • L. LuiselliEmail author
Open Access
Article

Abstract

The population density of three lacertid lizards (Podarcis sicula, Podarcis muralis, Lacerta viridis) was studied along several transects crossing agro-forest habitats in Mediterranean central Italy. Overall, seven transects, in three different wooded patches, were walked for lizards. Distance sampling (with uniform model design) was applied to the dataset in order to calculate population size, dispersion, and coefficient of variation at each site. In order to detect which factors may influence lizard density, a Generalized Linear Model (GLZ; multinomial distribution and cumulative log link function) was built, with environmental variables and density of predators’ variables being included in the model as covariates (scale predictor). Density of the three lizard species differed significantly among study sites, evidencing species-specific responses to local patch conditions. None of the environmental variables taken separately in the GLZ model influenced significantly the lizard densities, whereas lizards densities showed species-specific response to the considered environmental variables. The largest species (L. viridis) showed the highest density in the fragment with the most irregular shape and largest wood size, whereas the two smaller Podarcis species presented their highest population density in the site with the smallest wood patch and with a very low snake density. Density of P. sicula was negatively correlated with both the woodland area and Colubridae density, and was positively correlated with woodland shape (i.e. with circularity).

Keywords

Central Italy Density Distance Fragmentation Generalized Linear Models Lacertidae 

Abbreviations

MARCIG

Marcigliana

VALLEC

Valle Cavallara

MONTES

Monte S. Biagio

AIC

Akaike Information criterion

AICc

second-order Akaike Information Criterion

D

Density

GLZ

Generalized Linear Model

References

  1. Belovsky, G. E. 1987. Extinctions models and mammalian persistence. Viable populations for conservation. In: By M. E. Soulè (ed.), Viable Populations for Conservation. Cambridge University Press, Cambridge. pp. 35–57.CrossRefGoogle Scholar
  2. Blackburn, T.M., Brown, V.K., Doube, B.M., Greenwood, J.J.D., Lawton, J.H. and Stork, N.E. 1993. The relationship between abundance and body size in natural assemblages. J. Anim. Ecol. 62: 519–528.CrossRefGoogle Scholar
  3. Blasi, C. 1994. Fitoclimatologia del Lazio. Fitosociologia 27: 151–175.Google Scholar
  4. Bowers, M.A. and Matter, S.F. 1997. Landscape ecology of mammals: relationships between density and patch size. J. Mammal. 78: 999–1013.CrossRefGoogle Scholar
  5. Brotons, L., Mönkkönen, M. and Martin, L. 2003. Are fragments islands? Landscape context and density-area relationships in boreal forest birds. Amer. Nat. 3: 343–357.CrossRefGoogle Scholar
  6. Brown, R.M., Gist, D.H. and Taylor, D.H. 1995. Home range ecology of an introduced population of the European wall lizard Podarcis muralis (Lacertilia: Lacertidae) in Cincinnati, Ohio. Amer. Midl. Nat. 133: 344–359.CrossRefGoogle Scholar
  7. Buckland, S. T., Anderson, D. R., Burnham, K. P. and Laake, J.L. 1993. Distance Sampling: Estimating Abundance of Biological Populations. Chapman and Hall, London.Google Scholar
  8. Buckland S. T., Anderson D. R., Burnham K. P., Laake J. I., Borchers D.L. and Thomas, L. 2001. Introduction to Distance Sampling. Oxford University Press. Oxford.Google Scholar
  9. Buckley, L. B. and Rougharden, J. 2006. A hump-shaped density-area relationship for island lizards. Oikos 113: 243–250.CrossRefGoogle Scholar
  10. Burnham, K. P. and Anderson, D.R. 2002. Model Selection and Inference: A Practical Information-theoretical Approach. Springer, New York.Google Scholar
  11. Capizzi, D. and Luiselli, L. 1996. Feeding relationships and competitive interactions between phylogenetically unrelated predators (owls and snakes). Acta Oecol. 17: 265–284.Google Scholar
  12. Capula, M., Luiselli, L. and Rugiero, L. 1993. Comparative ecology in sympatric Podarcis muralis and P. sicula (Reptilia: Lacertidae) from the historical centre ofRome: What about competition and niche segregation inanurban habitat? Bollettino di Zoologia 60: 287–291.CrossRefGoogle Scholar
  13. Caughley, G. and Sinclair, A.R.E. 1994. Wildlife Ecology and Management. Blackwell, London.Google Scholar
  14. Cazzola, A. 2004. La Riserva Naturale della Marcigliana: sistema di qualità e compensazione nell’area metropolitana romana. Convegno internazionale: Il sistema rurale una sfida per la progettazione tra salvaguardia, sostenibilità e governo delle trasformazioni; 13–14 October 2004.Google Scholar
  15. Connor, E. F. and McCoy, E. D. 1979. The statistics and biology of the species-area relationships. Amer. Nat. 113:791–833.CrossRefGoogle Scholar
  16. Connor, E. F., Courtney, A. C. and James, M. Y. 2000. Individualsarea relationships: The relationship between animal population density and area. Ecology 81:734–748.Google Scholar
  17. Crooks, K. R. and Soulé, M. E. 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400: 563–566.CrossRefGoogle Scholar
  18. Damuth, J. 1981. Population density and body size in mammals. Nature 290: 699–700.CrossRefGoogle Scholar
  19. Damuth, J. 1987. Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy use. Biol. J. Linnean Soc. London 31: 193–246.CrossRefGoogle Scholar
  20. Gaston, K. J. and Blackburn, T.M. 1995. Birds, body size, and threat of extinction. Philos. Trans. Roy. Soc. London Series B: Biol. sci. 347: 205–212.CrossRefGoogle Scholar
  21. Gaston, K. J. and Blackburn, T.M. 1996. Conservation implications of geographic range size-body size relationships. Conserv. Biol. 10: 638–646.CrossRefGoogle Scholar
  22. Gotelli, N.J. and Entsminger, G.L. 2001. EcoSim:Null Models software for ecology. Version7.0. Available at http://garyentsmin-ger.com/ecosim/index.htm
  23. Guidi, A., Battisti, C. and Panzarasa, S. 2002. Note su flora, fauna e paesaggio delle aree protette gestite dalla Provincia di Roma. Provincia di Roma, Roma.Google Scholar
  24. Hamback, P. A., Summerville, K.S., Steffan-Dewenter, I., Krauss, J., Englund, G. and Crist, T.O. 2006. Habitat specialization, body size, and family identity explain lepidopteran density–area relationships in a cross-continental comparison. Proc. Natl Acad. Sci. USA 20: 8368–8373.Google Scholar
  25. Hanski, I. 1991. Single-species metapopulation dynamics:concepts, models and observations. Biol. J. Linnean Soc. 42: 17–38.CrossRefGoogle Scholar
  26. Hanski, I. 1999. Metapopulation Ecology. Oxford University Press, Oxford.Google Scholar
  27. Hardin, J. and Hilbe, J. 2003. Generalized Estimating Equations. Chapman and Hall/CRC, London.Google Scholar
  28. Hedley, S. L. and Buckland, S. T. 2004. Spatial models for line transect sampling. Amer. Stat. Assoc. International Biometric Society J. Agric. Biol. Environ. Stat. 9: 181–199.CrossRefGoogle Scholar
  29. Hein, E.W. 1997. Demonstration of line transect methodologies to estimate urban gray squirrel density. Environm. Manage. 21: 943–947.CrossRefGoogle Scholar
  30. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211.CrossRefGoogle Scholar
  31. Jellinek, S., Driscoll, D. A. and Kirkpatrick, J. B. 2004. Environmental and vegetation variables have a greater influence than habitat fragmentation in structuring lizard communities in remnant urban bushland. Austral Ecol. 29: 294–304.CrossRefGoogle Scholar
  32. Joyal, L. A., McCollough, M. and Hunter, jr M.L. 2001. Landscape ecology approaches to wetland species conservation: a case study of two turtle species in Southern Maine. Conserv. Biol. 15: 1755–1762.CrossRefGoogle Scholar
  33. Kjoss, V.A. and Litvaitis, J.A. 2001. Community structure of snakes in a human-dominated landscape. Biol. Conserv. 98: 285–292.CrossRefGoogle Scholar
  34. Kotliar, N. B. and Wiens, J. A. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59: 253–260.CrossRefGoogle Scholar
  35. Laan, R. and Verboom, B. 1990. Effects of pool size and isolation on amphibian communities. Biol. Conserv. 54: 251–262CrossRefGoogle Scholar
  36. Lehtinen, R. M, Ramanamanjato, J.-B. and Raveloarison, J. G. 2003. Edge effects and extinction proneness in a herpetofauna from Madagascar. Biodivers. Conserv. 12: 1357–1370.CrossRefGoogle Scholar
  37. Luiselli, L. 2006. Testing hypotheses on the ecological patterns of rarity using a novel model of study: snake communities worldwide. Web Ecol. 6: 44–58.CrossRefGoogle Scholar
  38. Luiselli, L., Akani, G.C., Rugiero, L. and Politano, E. 2005a. Relationships between body size, population abundance and niche characteristics in the communities of snakes from three habitats in southern Nigeria. J. Zool., London 265: 207–213.CrossRefGoogle Scholar
  39. Luiselli, L., Filippi, E. and Capula, M. 2005b. Geographic variation in diet composition of the grass snake (Natrix natrix) along the mainland and an island of Italy: the effects of habitat type and interference with potential competitors. Herpetol. J. 15: 221–230.Google Scholar
  40. MacArthur, R.H. and Pianka, E.R. 1966. On optimal use of a patchy environment. Amer. Nat. 100: 603–609.CrossRefGoogle Scholar
  41. Macchialo, P. and Sauli, A. S. 2006. La flora della Riserva Naturale della Marcigliana. Quaderni tecnici dei parchi del Lazio 1: 1–127.Google Scholar
  42. Marsili, L., Casini, S., Mori, G., Ancora, S., Bianchi, N., D’Agostino, A., Ferraro, M. and Fossi, M.C. 2009. The Italian wall lizard (Podarcis sicula) as a bioindicator of oil field activity. Sci. Total Environ. 407: 3597–3604.CrossRefGoogle Scholar
  43. Martin, J. and Lopez, M. 2001. Are fleeing “noisy” lizards signalling to predators? Acta Ethol. 3: 95–100.CrossRefGoogle Scholar
  44. Matter, S.F. 1997. Population density and area: the role of within and between patch processes. Oecologia 110: 533–538.CrossRefGoogle Scholar
  45. Matter, S.F. 1999. Population density and area: the role of within-and between-generation processes over time. Ecol. Model. 118: 261–275.CrossRefGoogle Scholar
  46. McCullagh, P. and Nelder, J. A. 1989. Generalized Linear Models, 2nd Ed. Chapman & Hall/CRC, London.Google Scholar
  47. Nelder, J. and Wedderburn, R. 1972. Generalized Linear Models. J. Roy. Stat. Soc.. Series A (General) 135: 370–384.CrossRefGoogle Scholar
  48. Owens,. I.P.F. and Bennett, P.M. 2000. Ecological basis of extinction risk in birds: Habitat loss versus human persecution and introduced predators. Proc. Natl Acad. Sci. U.S.A. 97: 12144.12148.Google Scholar
  49. Peters, R. H. and Raelson, J. V. 1984. Relations between individual size and mammalian population density. Amer. Nat. 124 : 498–517.CrossRefGoogle Scholar
  50. Pilorge, T. 1988. Dynamique comparée de populations de lézards vivipares : regulation et variabilité intra- et interpopulationnelle. These de Doctorat d’Etat. [Dissertation] Universite Pierre et Marie Curie. Paris. France.Google Scholar
  51. Rugiero, L. and Luiselli, L. 2007. Null model analysis of lizard communities in five urban parks of Rome. Amphibia-Reptilia 28: 547–553.CrossRefGoogle Scholar
  52. Saint Girons, H. and Bradshaw, S.D. 1989. Sédentarité, déplacements et répartition des individus dans une population de Lacerta viridis. Bijdragen tot de Dierkunde 59: 63–70.CrossRefGoogle Scholar
  53. Schroder, G.D. 1981. Using edge effect to estimate animal densities. J. Mammal. 62: 568–573.CrossRefGoogle Scholar
  54. Simpson, E.H. (1949). Measurement of diversity. Nature 163: 688.Google Scholar
  55. Sindaco, R., Doria, G., Razzetti, E. and Bernini, F., 2006. Atlante degli anfibi e dei rettili d’Italia. Societas Herpetologica Italica, Edizioni Polistampa, Firenze.Google Scholar
  56. Soulè, M.E., Bolger D.T., Alberts, A.C., Wright, J., Sorice, M. and Hills, S., 1988. Reconstructed dynamics of rapid extinctions of chaparral requiring birds in urban habitat islands. Conserv. Biol. 2: 75–92.CrossRefGoogle Scholar
  57. Tischendorf, L., Grez, A., Zaviezo, T. and Fahrig, L. 2005. Mechanisms affecting population density in fragmented habitat. Ecology and Society 10(1): 7. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/art7/
  58. Urbina-Cardona, J. N., Olivarez-Perez, M. and Reynoso, V.H. 2006. Herpetofauna diversity and microenviroment correlates across a pasture-edge-interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Riserve of Veracruz, Mexico. Biol. Conserv. 132: 61–75.CrossRefGoogle Scholar
  59. Venugopal, P. Dilip, 2010. Population density estimates of agamid lizards in human-modified habitats of the Western Ghats, India. Herpetol. J. 20: 69–76.Google Scholar
  60. Vignoli, L., Mocaer, I., Luiselli, L. and Bologna, M. A. 2009. Can a large metropolis sustain complex herpetofauna communities? An analysis of the suitability of green space fragments in Rome. Animal Conserv. 12: 456–466.CrossRefGoogle Scholar
  61. Vollono, C. and Guarino, F.M. 2002. Analisi scheletrocronologica in alcune specie di Anfibi e Rettili del Parco Regionale del Matese. In: Odierna, G. and Guarino, F.M. (eds.). I Vertebrati ectotermi del Parco Regionale del Matese. Centro stampa dell'Universita degli Studi di Napoli Federico II, Napoli. pp. 163–171.Google Scholar
  62. Wiens, J. A. 1976. Population responses to patchy environments. Annu. Rev. Ecol. Syst. 7: 81–120.CrossRefGoogle Scholar
  63. Young, R.P., Volahy, A.T., Bourou, R., Lewis, R.E., Durbin, J. and Fa, J.E. 2008. Estimating the population of the endangered flattailed tortoise Pyxis planicauda in the deciduous, dry forest of western Madagascar: a monitoring baselines. Oryx 42: 252–258.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Maura
    • 1
  • L. Vignoli
    • 1
    • 3
  • M. A. Bologna
    • 1
  • L. Rugiero
    • 2
  • L. Luiselli
    • 2
    Email author
  1. 1.Dipartimento di Biologia AmbientaleUniversità degli Studi Roma TreRomaItaly
  2. 2.Centre of Environmental Studies Demetra and F.I.Z.V. (Ecology)RomaItaly
  3. 3.Center for Evolutionary EcologyRomaItaly

Personalised recommendations