Population density of syntopic, differently sized lizards in three fragmented woodlands from Mediterranean Central Italy

Abstract

The population density of three lacertid lizards (Podarcis sicula, Podarcis muralis, Lacerta viridis) was studied along several transects crossing agro-forest habitats in Mediterranean central Italy. Overall, seven transects, in three different wooded patches, were walked for lizards. Distance sampling (with uniform model design) was applied to the dataset in order to calculate population size, dispersion, and coefficient of variation at each site. In order to detect which factors may influence lizard density, a Generalized Linear Model (GLZ; multinomial distribution and cumulative log link function) was built, with environmental variables and density of predators’ variables being included in the model as covariates (scale predictor). Density of the three lizard species differed significantly among study sites, evidencing species-specific responses to local patch conditions. None of the environmental variables taken separately in the GLZ model influenced significantly the lizard densities, whereas lizards densities showed species-specific response to the considered environmental variables. The largest species (L. viridis) showed the highest density in the fragment with the most irregular shape and largest wood size, whereas the two smaller Podarcis species presented their highest population density in the site with the smallest wood patch and with a very low snake density. Density of P. sicula was negatively correlated with both the woodland area and Colubridae density, and was positively correlated with woodland shape (i.e. with circularity).

Abbreviations

MARCIG:

Marcigliana

VALLEC:

Valle Cavallara

MONTES:

Monte S. Biagio

AIC:

Akaike Information criterion

AICc:

second-order Akaike Information Criterion

D:

Density

GLZ:

Generalized Linear Model

References

  1. Belovsky, G. E. 1987. Extinctions models and mammalian persistence. Viable populations for conservation. In: By M. E. Soulè (ed.), Viable Populations for Conservation. Cambridge University Press, Cambridge. pp. 35–57.

    Google Scholar 

  2. Blackburn, T.M., Brown, V.K., Doube, B.M., Greenwood, J.J.D., Lawton, J.H. and Stork, N.E. 1993. The relationship between abundance and body size in natural assemblages. J. Anim. Ecol. 62: 519–528.

    Article  Google Scholar 

  3. Blasi, C. 1994. Fitoclimatologia del Lazio. Fitosociologia 27: 151–175.

    Google Scholar 

  4. Bowers, M.A. and Matter, S.F. 1997. Landscape ecology of mammals: relationships between density and patch size. J. Mammal. 78: 999–1013.

    Article  Google Scholar 

  5. Brotons, L., Mönkkönen, M. and Martin, L. 2003. Are fragments islands? Landscape context and density-area relationships in boreal forest birds. Amer. Nat. 3: 343–357.

    Article  Google Scholar 

  6. Brown, R.M., Gist, D.H. and Taylor, D.H. 1995. Home range ecology of an introduced population of the European wall lizard Podarcis muralis (Lacertilia: Lacertidae) in Cincinnati, Ohio. Amer. Midl. Nat. 133: 344–359.

    Article  Google Scholar 

  7. Buckland, S. T., Anderson, D. R., Burnham, K. P. and Laake, J.L. 1993. Distance Sampling: Estimating Abundance of Biological Populations. Chapman and Hall, London.

    Google Scholar 

  8. Buckland S. T., Anderson D. R., Burnham K. P., Laake J. I., Borchers D.L. and Thomas, L. 2001. Introduction to Distance Sampling. Oxford University Press. Oxford.

    Google Scholar 

  9. Buckley, L. B. and Rougharden, J. 2006. A hump-shaped density-area relationship for island lizards. Oikos 113: 243–250.

    Article  Google Scholar 

  10. Burnham, K. P. and Anderson, D.R. 2002. Model Selection and Inference: A Practical Information-theoretical Approach. Springer, New York.

    Google Scholar 

  11. Capizzi, D. and Luiselli, L. 1996. Feeding relationships and competitive interactions between phylogenetically unrelated predators (owls and snakes). Acta Oecol. 17: 265–284.

    Google Scholar 

  12. Capula, M., Luiselli, L. and Rugiero, L. 1993. Comparative ecology in sympatric Podarcis muralis and P. sicula (Reptilia: Lacertidae) from the historical centre ofRome: What about competition and niche segregation inanurban habitat? Bollettino di Zoologia 60: 287–291.

    Article  Google Scholar 

  13. Caughley, G. and Sinclair, A.R.E. 1994. Wildlife Ecology and Management. Blackwell, London.

    Google Scholar 

  14. Cazzola, A. 2004. La Riserva Naturale della Marcigliana: sistema di qualità e compensazione nell’area metropolitana romana. Convegno internazionale: Il sistema rurale una sfida per la progettazione tra salvaguardia, sostenibilità e governo delle trasformazioni; 13–14 October 2004.

    Google Scholar 

  15. Connor, E. F. and McCoy, E. D. 1979. The statistics and biology of the species-area relationships. Amer. Nat. 113:791–833.

    Article  Google Scholar 

  16. Connor, E. F., Courtney, A. C. and James, M. Y. 2000. Individualsarea relationships: The relationship between animal population density and area. Ecology 81:734–748.

    Google Scholar 

  17. Crooks, K. R. and Soulé, M. E. 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400: 563–566.

    Article  CAS  Google Scholar 

  18. Damuth, J. 1981. Population density and body size in mammals. Nature 290: 699–700.

    Article  Google Scholar 

  19. Damuth, J. 1987. Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy use. Biol. J. Linnean Soc. London 31: 193–246.

    Article  Google Scholar 

  20. Gaston, K. J. and Blackburn, T.M. 1995. Birds, body size, and threat of extinction. Philos. Trans. Roy. Soc. London Series B: Biol. sci. 347: 205–212.

    Article  Google Scholar 

  21. Gaston, K. J. and Blackburn, T.M. 1996. Conservation implications of geographic range size-body size relationships. Conserv. Biol. 10: 638–646.

    Article  Google Scholar 

  22. Gotelli, N.J. and Entsminger, G.L. 2001. EcoSim:Null Models software for ecology. Version7.0. Available at http://garyentsmin-ger.com/ecosim/index.htm

  23. Guidi, A., Battisti, C. and Panzarasa, S. 2002. Note su flora, fauna e paesaggio delle aree protette gestite dalla Provincia di Roma. Provincia di Roma, Roma.

    Google Scholar 

  24. Hamback, P. A., Summerville, K.S., Steffan-Dewenter, I., Krauss, J., Englund, G. and Crist, T.O. 2006. Habitat specialization, body size, and family identity explain lepidopteran density–area relationships in a cross-continental comparison. Proc. Natl Acad. Sci. USA 20: 8368–8373.

    Google Scholar 

  25. Hanski, I. 1991. Single-species metapopulation dynamics:concepts, models and observations. Biol. J. Linnean Soc. 42: 17–38.

    Article  Google Scholar 

  26. Hanski, I. 1999. Metapopulation Ecology. Oxford University Press, Oxford.

    Google Scholar 

  27. Hardin, J. and Hilbe, J. 2003. Generalized Estimating Equations. Chapman and Hall/CRC, London.

    Google Scholar 

  28. Hedley, S. L. and Buckland, S. T. 2004. Spatial models for line transect sampling. Amer. Stat. Assoc. International Biometric Society J. Agric. Biol. Environ. Stat. 9: 181–199.

    Article  Google Scholar 

  29. Hein, E.W. 1997. Demonstration of line transect methodologies to estimate urban gray squirrel density. Environm. Manage. 21: 943–947.

    Article  CAS  Google Scholar 

  30. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211.

    Article  Google Scholar 

  31. Jellinek, S., Driscoll, D. A. and Kirkpatrick, J. B. 2004. Environmental and vegetation variables have a greater influence than habitat fragmentation in structuring lizard communities in remnant urban bushland. Austral Ecol. 29: 294–304.

    Article  Google Scholar 

  32. Joyal, L. A., McCollough, M. and Hunter, jr M.L. 2001. Landscape ecology approaches to wetland species conservation: a case study of two turtle species in Southern Maine. Conserv. Biol. 15: 1755–1762.

    Article  Google Scholar 

  33. Kjoss, V.A. and Litvaitis, J.A. 2001. Community structure of snakes in a human-dominated landscape. Biol. Conserv. 98: 285–292.

    Article  Google Scholar 

  34. Kotliar, N. B. and Wiens, J. A. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59: 253–260.

    Article  Google Scholar 

  35. Laan, R. and Verboom, B. 1990. Effects of pool size and isolation on amphibian communities. Biol. Conserv. 54: 251–262

    Article  Google Scholar 

  36. Lehtinen, R. M, Ramanamanjato, J.-B. and Raveloarison, J. G. 2003. Edge effects and extinction proneness in a herpetofauna from Madagascar. Biodivers. Conserv. 12: 1357–1370.

    Article  Google Scholar 

  37. Luiselli, L. 2006. Testing hypotheses on the ecological patterns of rarity using a novel model of study: snake communities worldwide. Web Ecol. 6: 44–58.

    Article  Google Scholar 

  38. Luiselli, L., Akani, G.C., Rugiero, L. and Politano, E. 2005a. Relationships between body size, population abundance and niche characteristics in the communities of snakes from three habitats in southern Nigeria. J. Zool., London 265: 207–213.

    Article  Google Scholar 

  39. Luiselli, L., Filippi, E. and Capula, M. 2005b. Geographic variation in diet composition of the grass snake (Natrix natrix) along the mainland and an island of Italy: the effects of habitat type and interference with potential competitors. Herpetol. J. 15: 221–230.

    Google Scholar 

  40. MacArthur, R.H. and Pianka, E.R. 1966. On optimal use of a patchy environment. Amer. Nat. 100: 603–609.

    Article  Google Scholar 

  41. Macchialo, P. and Sauli, A. S. 2006. La flora della Riserva Naturale della Marcigliana. Quaderni tecnici dei parchi del Lazio 1: 1–127.

    Google Scholar 

  42. Marsili, L., Casini, S., Mori, G., Ancora, S., Bianchi, N., D’Agostino, A., Ferraro, M. and Fossi, M.C. 2009. The Italian wall lizard (Podarcis sicula) as a bioindicator of oil field activity. Sci. Total Environ. 407: 3597–3604.

    Article  CAS  Google Scholar 

  43. Martin, J. and Lopez, M. 2001. Are fleeing “noisy” lizards signalling to predators? Acta Ethol. 3: 95–100.

    Article  Google Scholar 

  44. Matter, S.F. 1997. Population density and area: the role of within and between patch processes. Oecologia 110: 533–538.

    Article  Google Scholar 

  45. Matter, S.F. 1999. Population density and area: the role of within-and between-generation processes over time. Ecol. Model. 118: 261–275.

    Article  Google Scholar 

  46. McCullagh, P. and Nelder, J. A. 1989. Generalized Linear Models, 2nd Ed. Chapman & Hall/CRC, London.

  47. Nelder, J. and Wedderburn, R. 1972. Generalized Linear Models. J. Roy. Stat. Soc.. Series A (General) 135: 370–384.

    Article  Google Scholar 

  48. Owens,. I.P.F. and Bennett, P.M. 2000. Ecological basis of extinction risk in birds: Habitat loss versus human persecution and introduced predators. Proc. Natl Acad. Sci. U.S.A. 97: 12144.12148.

  49. Peters, R. H. and Raelson, J. V. 1984. Relations between individual size and mammalian population density. Amer. Nat. 124 : 498–517.

    Article  Google Scholar 

  50. Pilorge, T. 1988. Dynamique comparée de populations de lézards vivipares : regulation et variabilité intra- et interpopulationnelle. These de Doctorat d’Etat. [Dissertation] Universite Pierre et Marie Curie. Paris. France.

  51. Rugiero, L. and Luiselli, L. 2007. Null model analysis of lizard communities in five urban parks of Rome. Amphibia-Reptilia 28: 547–553.

    Article  Google Scholar 

  52. Saint Girons, H. and Bradshaw, S.D. 1989. Sédentarité, déplacements et répartition des individus dans une population de Lacerta viridis. Bijdragen tot de Dierkunde 59: 63–70.

    Article  Google Scholar 

  53. Schroder, G.D. 1981. Using edge effect to estimate animal densities. J. Mammal. 62: 568–573.

    Article  Google Scholar 

  54. Simpson, E.H. (1949). Measurement of diversity. Nature 163: 688.

  55. Sindaco, R., Doria, G., Razzetti, E. and Bernini, F., 2006. Atlante degli anfibi e dei rettili d’Italia. Societas Herpetologica Italica, Edizioni Polistampa, Firenze.

    Google Scholar 

  56. Soulè, M.E., Bolger D.T., Alberts, A.C., Wright, J., Sorice, M. and Hills, S., 1988. Reconstructed dynamics of rapid extinctions of chaparral requiring birds in urban habitat islands. Conserv. Biol. 2: 75–92.

    Article  Google Scholar 

  57. Tischendorf, L., Grez, A., Zaviezo, T. and Fahrig, L. 2005. Mechanisms affecting population density in fragmented habitat. Ecology and Society 10(1): 7. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/art7/

  58. Urbina-Cardona, J. N., Olivarez-Perez, M. and Reynoso, V.H. 2006. Herpetofauna diversity and microenviroment correlates across a pasture-edge-interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Riserve of Veracruz, Mexico. Biol. Conserv. 132: 61–75.

    Article  Google Scholar 

  59. Venugopal, P. Dilip, 2010. Population density estimates of agamid lizards in human-modified habitats of the Western Ghats, India. Herpetol. J. 20: 69–76.

    Google Scholar 

  60. Vignoli, L., Mocaer, I., Luiselli, L. and Bologna, M. A. 2009. Can a large metropolis sustain complex herpetofauna communities? An analysis of the suitability of green space fragments in Rome. Animal Conserv. 12: 456–466.

    Article  Google Scholar 

  61. Vollono, C. and Guarino, F.M. 2002. Analisi scheletrocronologica in alcune specie di Anfibi e Rettili del Parco Regionale del Matese. In: Odierna, G. and Guarino, F.M. (eds.). I Vertebrati ectotermi del Parco Regionale del Matese. Centro stampa dell'Universita degli Studi di Napoli Federico II, Napoli. pp. 163–171.

  62. Wiens, J. A. 1976. Population responses to patchy environments. Annu. Rev. Ecol. Syst. 7: 81–120.

    Article  Google Scholar 

  63. Young, R.P., Volahy, A.T., Bourou, R., Lewis, R.E., Durbin, J. and Fa, J.E. 2008. Estimating the population of the endangered flattailed tortoise Pyxis planicauda in the deciduous, dry forest of western Madagascar: a monitoring baselines. Oryx 42: 252–258.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Luiselli.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Maura, M., Vignoli, L., Bologna, M.A. et al. Population density of syntopic, differently sized lizards in three fragmented woodlands from Mediterranean Central Italy. COMMUNITY ECOLOGY 12, 249–258 (2011). https://doi.org/10.1556/ComEc.12.2011.2.14

Download citation

Keywords

  • Central Italy
  • Density
  • Distance
  • Fragmentation
  • Generalized Linear Models
  • Lacertidae